把下面的代码转成C++实现import numpy as np from scipy.optimize import leastsq # 5个点的坐标 points = np.array([(349.816803, -56.949635), (345.811920, -56.854336), (341.920746, -57.405914), (353.892120, -57.741192), (357.636841, -59.161972)]) # 拟合圆的函数 def circle_func(params, x, y): a, b, r = params return (x - a) ** 2 + (y - b) ** 2 - r ** 2 # 最小二乘法拟合圆 def fit_circle(points): x = points[:, 0] y = points[:, 1] # 初始值为点集的中心和最大距离的一半 a0, b0 = np.mean(x), np.mean(y) r0 = np.max(np.sqrt((x - a0) ** 2 + (y - b0) ** 2)) / 2 params, flag = leastsq(circle_func, [a0, b0, r0], args=(x, y)) a, b, r = params return (a, b, r) # 求舍弃误差最大的点 def find_outlier(points): _, _, r = fit_circle(points) max_distance = 0 outlier = None for i, point in enumerate(points): distance = np.sqrt((point[0] - a) ** 2 + (point[1] - b) ** 2) - r if distance > max_distance: max_distance = distance outlier = i return outlier # 拟合圆和求舍弃误差最大的点 a, b, r = fit_circle(points) outlier = find_outlier(points) print("最佳圆心为:({:.2f}, {:.2f})".format(a, b)) print("最佳半径为:{:.2f}".format(r)) print("舍弃误差最大的点为:{}".format(points[outlier]))
时间: 2023-12-23 20:04:08 浏览: 138
以下是将代码转成C++的实现:
```cpp
#include <iostream>
#include <cmath>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <unsupported/Eigen/NonLinearOptimization>
#include <unsupported/Eigen/NumericalDiff>
using namespace Eigen;
// 5个点的坐标
MatrixXd points(5, 2);
points << 349.816803, -56.949635,
345.811920, -56.854336,
341.920746, -57.405914,
353.892120, -57.741192,
357.636841, -59.161972;
// 拟合圆的函数
template<typename T>
void circle_func(const T* params, const T& x, const T& y, T* fvec) {
const T& a = params[0];
const T& b = params[1];
const T& r = params[2];
fvec[0] = (x - a) * (x - a) + (y - b) * (y - b) - r * r;
}
// 最小二乘法拟合圆
struct CircleFitFunctor : Eigen::NumericalDiff< CircleFitFunctor >
{
int operator()(const Eigen::VectorXd& params, Eigen::VectorXd& fvec) const {
for (int i = 0; i < points.rows(); ++i) {
circle_func(params.data(), points(i, 0), points(i, 1), fvec.data() + i);
}
return 0;
}
};
// 求舍弃误差最大的点
int find_outlier() {
double a, b, r;
// 拟合圆
CircleFitFunctor functor;
LevenbergMarquardt<CircleFitFunctor> lm(functor);
VectorXd params(3);
params << points.col(0).mean(), points.col(1).mean(), (points.colwise() - params.head<2>().transpose()).rowwise().norm().maxCoeff() / 2;
lm.minimize(params);
a = params[0];
b = params[1];
r = params[2];
// 求舍弃误差最大的点
double max_distance = 0;
int outlier = -1;
for (int i = 0; i < points.rows(); ++i) {
double distance = (points(i, 0) - a) * (points(i, 0) - a) + (points(i, 1) - b) * (points(i, 1) - b) - r * r;
if (distance > max_distance) {
max_distance = distance;
outlier = i;
}
}
return outlier;
}
int main() {
// 拟合圆和求舍弃误差最大的点
double a, b, r;
a = points.col(0).mean();
b = points.col(1).mean();
r = (points.colwise() - Vector2d(a, b)).rowwise().norm().maxCoeff() / 2;
std::cout << "最佳圆心为:(" << a << ", " << b << ")" << std::endl;
std::cout << "最佳半径为:" << r << std::endl;
int outlier = find_outlier();
std::cout << "舍弃误差最大的点为:" << points.row(outlier) << std::endl;
return 0;
}
```
阅读全文