This code block seems to be evaluating a trained PyTorch model on a test set and calculating the Root Mean Squared Error (RMSE) of the model's predictions. The with torch.no_grad() statement is used to turn off the gradient calculation during testing, since we do not need to backpropagate the error. This can save memory and speed up evaluation. Next, the user IDs, item IDs, and corresponding ratings are extracted from the test set and converted to PyTorch tensors using the LongTensor and FloatTensor functions. The model object is then called with the user and item tensors as inputs to get the predicted ratings. The criterion function calculates the loss between the predicted ratings and actual ratings, and the RMSE is computed by taking the square root of the loss. Finally, the RMSE value is printed using string formatting to display only 3 decimal places.翻译
时间: 2024-04-22 08:25:59 浏览: 177
使用数据包络分析确定可靠性不确定性指标的最优模型
这段代码似乎是在测试集上评估训练好的 PyTorch 模型,并计算模型预测的均方根误差(RMSE)。使用 `with torch.no_grad()` 语句可以在测试期间关闭梯度计算,因为我们不需要反向传播误差。这可以节省内存并加快评估速度。接下来,从测试集中提取用户 ID、物品 ID 和相应的评分,并使用 `LongTensor` 和 `FloatTensor` 函数将它们转换为 PyTorch 张量。然后,将用户和物品张量作为输入调用模型对象以获取预测评分。`criterion` 函数计算预测评分和实际评分之间的损失,然后通过对损失进行平方根运算计算 RMSE。最后,使用字符串格式化打印 RMSE 值,仅显示 3 位小数。
阅读全文