attempt_node = random.choice(list(all_node_attempt[i])) File "D:\Python3.10.8\lib\random.py", line 378, in choice return seq[self._randbelow(len(seq))] IndexError: list index out of range
时间: 2024-02-19 16:58:06 浏览: 257
根据你提供的错误信息,这个错误是由于尝试在一个空列表中进行随机选择导致的。你需要检查代码,确保在使用 `all_node_attempt[i]` 之前,该列表已经被正确初始化并且不为空。你可以使用 `print()` 语句调试代码,查看变量的值是否符合预期。同时,你也可以添加一些条件来避免对空列表进行操作,例如:
```
if all_node_attempt[i]:
attempt_node = random.choice(list(all_node_attempt[i]))
else:
# 处理空列表的情况
```
相关问题
import torchimport cv2import numpy as npfrom models.experimental import attempt_loadfrom utils.general import non_max_suppressionclass YoloV5Detector: def __init__(self, model_path, conf_thresh=0.25, iou_thresh=0.45): self.conf_thresh = conf_thresh self.iou_thresh = iou_thresh self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = attempt_load(model_path, map_location=self.device) self.model.eval() def detect(self, image_path): img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.transpose(2, 0, 1) img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(self.device).float() / 255.0 # Run inference with torch.no_grad(): results = self.model(img, size=img.shape[-2:]) results = non_max_suppression(results, conf_thres=self.conf_thresh, iou_thres=self.iou_thresh) return results
这是一个使用 YOLOv5 模型进行目标检测的 Python 代码。该类 YoloV5Detector 包含了模型加载、图片预处理和推理的功能。具体来说,会使用 OpenCV 库读取图片,将其转换为 RGB 格式,然后转换为 PyTorch 的 Tensor 格式,并将其送入 YOLOv5 模型中进行推理。最后,使用非极大值抑制算法(NMS)筛选出检测出来的物体,并返回结果。其中,conf_thresh 和 iou_thresh 分别表示置信度和重叠阈值,可以通过调整这两个参数来控制检测结果的准确率和召回率。
def train_test(X, y, X1, y1, X2, y2, dataset_name, emotion_class, groupsLabel, groupsLabel1, spot_multiple, final_subjects, final_emotions, final_samples, final_dataset_spotting, k, k_p, expression_type, epochs_spot=10, epochs_recog=100, spot_lr=0.0005, recog_lr=0.0005, batch_size=32, ratio=5, p=0.55, spot_attempt=1, recog_attempt=1, train=False): start = time.time() loso = LeaveOneGroupOut() subject_count = 0 total_gt_spot = 0 metric_final = MeanAveragePrecision2d(num_classes=1) adam_spot = keras.optimizers.Adam(lr=spot_lr) adam_recog = keras.optimizers.Adam(lr=recog_lr) model_spot = MEAN_Spot(adam_spot) weight_reset_spot = model_spot.get_weights() #Initial weights
这段代码是一个用 Keras 训练模型的函数。其中,它的参数包括输入数据 X 和标签 y,测试数据 X1 和标签 y1,验证数据 X2 和标签 y2,以及其他一些训练参数,例如学习率、批量大小、训练轮数等等。
模型的训练主要分为两个阶段:首先是 MEAN_Spot 模型的训练,然后是训练识别模型。在训练过程中,使用了 LeaveOneGroupOut 交叉验证方法,以避免过拟合。
此外,该函数还定义了一个 MeanAveragePrecision2d 类型的指标 metric_final,用于评估模型性能。最后,函数返回了模型的训练时间、总共正确识别的样本数以及 MEAN_Spot 模型的初始权重 weight_reset_spot。
阅读全文