帮我用pytorch定义一个loggabor_fn函数,用于生成LogGabor滤波器的参数,以及一个LogGaborConv2d类,用于创建一个神经网络层,其中需使用LogGabor滤波器
时间: 2023-05-12 11:02:48 浏览: 112
好的,以下是定义 loggabor_fn 函数的代码:
```python
import torch
import math
def loggabor_fn(sigma, theta, lambd, gamma, psi, ksize):
"""
生成 LogGabor 滤波器的参数
:param sigma: float, 控制高斯包络的标准差
:param theta: float, 控制滤波器的方向
:param lambd: float, 控制滤波器的波长
:param gamma: float, 控制高斯包络的宽度
:param psi: float, 控制相位
:param ksize: int, 滤波器的大小
:return: LogGabor 滤波器的参数
"""
half_size = ksize // 2
x, y = torch.meshgrid(torch.arange(-half_size, half_size + 1), torch.arange(-half_size, half_size + 1))
x_theta = x * math.cos(theta) + y * math.sin(theta)
y_theta = -x * math.sin(theta) + y * math.cos(theta)
sigma_x = sigma
sigma_y = sigma / gamma
envelope = torch.exp(-0.5 * ((x_theta ** 2) / (sigma_x ** 2) + (y_theta ** 2) / (sigma_y ** 2)))
wavelength = lambd
phase = torch.exp(1j * 2 * math.pi * x_theta / wavelength + psi)
return envelope * phase
```
接下来是定义 LogGaborConv2d 类的代码:
```python
import torch.nn as nn
class LogGaborConv2d(nn.Module):
"""
创建一个神经网络层,其中使用 LogGabor 滤波器
"""
def __init__(self, in_channels, out_channels, kernel_size, sigma, theta, lambd, gamma, psi, stride=1, padding=0, dilation=1, groups=1, bias=True):
super(LogGaborConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.weight = nn.Parameter(torch.zeros((out_channels, in_channels, kernel_size, kernel_size), dtype=torch.complex64))
self.bias = nn.Parameter(torch.zeros(out_channels)) if bias else None
for i in range(out_channels):
for j in range(in_channels):
self.weight[i, j] = loggabor_fn(sigma=sigma, theta=theta, lambd=lambd, gamma=gamma, psi=psi, ksize=kernel_size)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight.real, a=math.sqrt(5))
nn.init.zeros_(self.weight.imag)
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight.real)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias, -bound, bound)
def forward(self, input):
return torch.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
```
希望这些代码能够帮到你!