vocab_size = 98635 max_len=200 hidden_dim=32这3段代码啥意思

时间: 2024-03-04 18:50:38 浏览: 20
这三段代码应该是指在构建模型时使用的一些参数。 - `vocab_size = 98635`:这是指模型使用的词汇表(Vocabulary)的大小,也就是模型中可以使用的不同词汇的数量。这个值通常是根据语料库中的词汇数量来确定的。 - `max_len=200`:这是指模型处理的输入文本的最大长度,超过这个长度的部分将会被截断。这个值通常是根据语料库中文本的长度分布来确定的。 - `hidden_dim=32`:这是指模型中隐藏层的维度大小,也就是模型在处理文本时使用的特征的数量。这个值通常是根据实验调整得到的,一般来说,更大的值可以提高模型的表达能力,但会增加模型的复杂度和计算量。
相关问题

写一段transformer代码

### 回答1: 好的,以下是一个简单的 Transformer 代码示例: ``` import tensorflow as tf class Transformer(tf.keras.Model): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, rate=0.1): super(Transformer, self).__init__() self.encoder = Encoder(num_layers, d_model, num_heads, dff, input_vocab_size, rate) self.decoder = Decoder(num_layers, d_model, num_heads, dff, target_vocab_size, rate) self.final_layer = tf.keras.layers.Dense(target_vocab_size) def call(self, inp, tar, training, enc_padding_mask, look_ahead_mask, dec_padding_mask): enc_output = self.encoder(inp, training, enc_padding_mask) dec_output, attention_weights = self.decoder( tar, enc_output, training, look_ahead_mask, dec_padding_mask) final_output = self.final_layer(dec_output) return final_output, attention_weights class Encoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, rate=0.1): super(Encoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model) self.pos_encoding = positional_encoding(input_vocab_size, self.d_model) self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate) for _ in range(num_layers)] self.dropout = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): seq_len = tf.shape(x)[1] # adding embedding and position encoding. x = self.embedding(x) # (batch_size, input_seq_len, d_model) x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32)) x += self.pos_encoding[:, :seq_len, :] x = self.dropout(x, training=training) for i in range(self.num_layers): x = self.enc_layers[i](x, training, mask) return x class EncoderLayer(tf.keras.layers.Layer): def __init__(self, d_model, num_heads, dff, rate=0.1): super(EncoderLayer, self).__init__() self.mha = MultiHeadAttention(d_model, num_heads) self.ffn = point_wise_feed_forward_network(d_model, dff) self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = tf.keras.layers.Dropout(rate) self.dropout2 = tf.keras.layers.Dropout(rate) def call(self, x, training, mask): attn_output, _ = self.mha(x, x, x, mask) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(x + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) out2 = self.layernorm2(out1 + ffn_output) return out2 class Decoder(tf.keras.layers.Layer): def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size, rate=0.1): super(Decoder, self).__init__() self.d_model = d_model self.num_layers = num_layers self.embedding = tf.keras.layers ### 回答2: Transformer是一种用于自然语言处理的深度学习模型。以下是一个使用Python编写的简单Transformer代码段,用于进行文本分类任务: ```python import torch import torch.nn as nn import torch.optim as optim class Transformer(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim, num_layers, num_heads): super(Transformer, self).__init__() self.embedding = nn.Embedding(input_dim, hidden_dim) self.positional_encoding = PositionalEncoding(hidden_dim) self.transformer_encoder_layer = nn.TransformerEncoderLayer(hidden_dim, num_heads) self.transformer_encoder = nn.TransformerEncoder(self.transformer_encoder_layer, num_layers) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): embedded = self.embedding(x) encoded = self.positional_encoding(embedded) transformed = self.transformer_encoder(encoded) pooled = torch.mean(transformed, dim=1) output = self.fc(pooled) return output class PositionalEncoding(nn.Module): def __init__(self, hidden_dim, max_seq_len=300): super(PositionalEncoding, self).__init__() self.hidden_dim = hidden_dim self.dropout = nn.Dropout(p=0.1) pe = torch.zeros(max_seq_len, hidden_dim) position = torch.arange(0, max_seq_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_dim, 2) * -(math.log(10000.0) / hidden_dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): x = x * math.sqrt(self.hidden_dim) x = x + self.pe[:, :x.size(1)] x = self.dropout(x) return x ``` 以上代码定义了一个Transformer模型类,包括一个词嵌入层、位置编码层、Transformer编码层和一个全连接层。其中,位置编码层使用来自论文《Attention is All You Need》中提出的方法,用于为序列中的词汇位置添加信息。模型的前向传播过程首先对输入的文本进行词嵌入,然后进行位置编码,接着使用Transformer编码层进行特征提取和表示学习,将输出进行平均池化后再通过全连接层进行分类预测。这段代码可以用于文本分类任务中,输入是一个整数序列,输出是每个类别的预测概率。 ### 回答3: Transformer是一种深度学习模型架构,适用于自然语言处理任务,例如机器翻译、文本生成等。下面是一个简单的Transformer代码示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class TransformerEncoder(nn.Module): def __init__(self, input_size, hidden_size, num_layers, num_heads): super(TransformerEncoder, self).__init__() self.embedding = nn.Embedding(input_size, hidden_size) self.position_encoding = PositionalEncoding(hidden_size) self.encoder_layer = TransformerEncoderLayer(hidden_size, num_heads) def forward(self, inputs): embeddings = self.embedding(inputs) encoded = self.position_encoding(embeddings) output = self.encoder_layer(encoded) return output class PositionalEncoding(nn.Module): def __init__(self, hidden_size, max_sequence_length=1000): super(PositionalEncoding, self).__init__() position_encoding = torch.zeros(max_sequence_length, hidden_size) position = torch.arange(0, max_sequence_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, hidden_size, 2).float() * (-math.log(10000.0) / hidden_size)) position_encoding[:, 0::2] = torch.sin(position * div_term) position_encoding[:, 1::2] = torch.cos(position * div_term) self.register_buffer('position_encoding', position_encoding) def forward(self, inputs): seq_length = inputs.size(1) position_encoding = self.position_encoding[:seq_length, :] return inputs + position_encoding class TransformerEncoderLayer(nn.Module): def __init__(self, hidden_size, num_heads, dropout=0.1): super(TransformerEncoderLayer, self).__init__() self.self_attention = MultiHeadAttention(hidden_size, num_heads) self.feed_forward = FeedForward(hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, inputs): attended = self.self_attention(inputs) attended = self.dropout(attented) output = attended + inputs output = self.feed_forward(output) output = self.dropout(output) return output class MultiHeadAttention(nn.Module): def __init__(self, hidden_size, num_heads): super(MultiHeadAttention, self).__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_size = hidden_size // num_heads self.W_q = nn.Linear(hidden_size, hidden_size) self.W_k = nn.Linear(hidden_size, hidden_size) self.W_v = nn.Linear(hidden_size, hidden_size) self.W_o = nn.Linear(hidden_size, hidden_size) def forward(self, inputs): batch_size, seq_length, _ = inputs.size() query = self.W_q(inputs) key = self.W_k(inputs) value = self.W_v(inputs) query = query.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) key = key.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) value = value.view(batch_size, seq_length, self.num_heads, self.head_size).transpose(1, 2) attention_scores = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.head_size) attention_probs = F.softmax(attention_scores, dim=-1) attended = torch.matmul(attention_probs, value).transpose(1, 2).contiguous().view(batch_size, seq_length, self.hidden_size) output = self.W_o(attended) return output class FeedForward(nn.Module): def __init__(self, hidden_size, dropout=0.1): super(FeedForward, self).__init__() self.linear1 = nn.Linear(hidden_size, 4 * hidden_size) self.linear2 = nn.Linear(4 * hidden_size, hidden_size) self.dropout = nn.Dropout(dropout) def forward(self, inputs): output = self.linear1(inputs) output = F.relu(output) output = self.dropout(output) output = self.linear2(output) return output ``` 以上是一个简单的Transformer模型代码示例,包括了TransformerEncoder、PositionalEncoding、TransformerEncoderLayer、MultiHeadAttention和FeedForward等模块的实现。这段代码可以作为一个Transformer模型的基本框架,但是其中的具体实现可能需要根据具体任务需求进行调整和优化。

写一段NER任务的完整代码

下面是一个基于PyTorch的NER任务代码示例,其中使用了BiLSTM-CRF模型: ```python import torch import torch.nn as nn import torch.optim as optim class BiLSTM_CRF(nn.Module): def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim): super(BiLSTM_CRF, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.vocab_size = vocab_size self.tag_to_ix = tag_to_ix self.tagset_size = len(tag_to_ix) self.word_embeddings = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True) self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size) self.transitions = nn.Parameter( torch.randn(self.tagset_size, self.tagset_size)) self.transitions.data[tag_to_ix[START_TAG], :] = -10000 self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 self.hidden = self.init_hidden() def init_hidden(self): return (torch.randn(2, 1, self.hidden_dim // 2), torch.randn(2, 1, self.hidden_dim // 2)) def _forward_alg(self, feats): init_alphas = torch.full((1, self.tagset_size), -10000.) init_alphas[0][self.tag_to_ix[START_TAG]] = 0. forward_var = init_alphas for feat in feats: alphas_t = [] for next_tag in range(self.tagset_size): emit_score = feat[next_tag].view( 1, -1).expand(1, self.tagset_size) trans_score = self.transitions[next_tag].view(1, -1) next_tag_var = forward_var + trans_score + emit_score alphas_t.append(torch.logsumexp(next_tag_var, dim=1).view(1)) forward_var = torch.cat(alphas_t).view(1, -1) terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] alpha = torch.logsumexp(terminal_var, dim=1)[0] return alpha def _get_lstm_features(self, sentence): self.hidden = self.init_hidden() embeds = self.word_embeddings(sentence).view(len(sentence), 1, -1) lstm_out, self.hidden = self.lstm(embeds, self.hidden) lstm_out = lstm_out.view(len(sentence), self.hidden_dim) lstm_feats = self.hidden2tag(lstm_out) return lstm_feats def _score_sentence(self, feats, tags): score = torch.zeros(1) tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags]) for i, feat in enumerate(feats): score = score + \ self.transitions[tags[i+1], tags[i]] + feat[tags[i+1]] score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]] return score def _viterbi_decode(self, feats): backpointers = [] init_vvars = torch.full((1, self.tagset_size), -10000.) init_vvars[0][self.tag_to_ix[START_TAG]] = 0 forward_var = init_vvars for feat in feats: bptrs_t = [] viterbivars_t = [] for next_tag in range(self.tagset_size): next_tag_var = forward_var + self.transitions[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0][best_tag_id].view(1)) forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1) backpointers.append(bptrs_t) terminal_var = forward_var + \ self.transitions[self.tag_to_ix[STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0][best_tag_id] best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) start = best_path.pop() assert start == self.tag_to_ix[START_TAG] best_path.reverse() return path_score, best_path def neg_log_likelihood(self, sentence, tags): lstm_feats = self._get_lstm_features(sentence) forward_score = self._forward_alg(lstm_feats) gold_score = self._score_sentence(lstm_feats, tags) return forward_score - gold_score def forward(self, sentence): lstm_feats = self._get_lstm_features(sentence) score, tag_seq = self._viterbi_decode(lstm_feats) return score, tag_seq START_TAG = "<START>" STOP_TAG = "<STOP>" EMBEDDING_DIM = 5 HIDDEN_DIM = 4 training_data = [( "the wall street journal reported today that apple corporation made money".split(), "B I I I O O O B I O O".split() ), ( "georgia tech is a university in georgia".split(), "B I O O O O B".split() )] word_to_ix = {} for sentence, tags in training_data: for word in sentence: if word not in word_to_ix: word_to_ix[word] = len(word_to_ix) tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4} model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM) optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4) for epoch in range(300): for sentence, tags in training_data: model.zero_grad() sentence_in = prepare_sequence(sentence, word_to_ix) targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long) loss = model.neg_log_likelihood(sentence_in, targets) loss.backward() optimizer.step() with torch.no_grad(): precheck_sent = prepare_sequence(training_data[0][0], word_to_ix) print(model(precheck_sent)) ``` 这份代码实现了一个简单的NER任务的训练和预测,其中BiLSTM-CRF模型结合了BiLSTM和CRF两种技术,用于标注每个单词的实体类型。可以通过调整模型超参数和优化器参数来改进模型性能。

相关推荐

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。