for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { painter.setPen(QPen(Qt::red, 2)); for (int j = 0; j < paths[i].size() - 1; j++) { painter.drawLine(paths[i][j]->x, paths[i][j]->y, paths[i][j+1]->x, paths[i][j+1]->y); } } },修改爲黨path為空時,則跳出來不運行

时间: 2023-11-28 14:47:41 浏览: 72
你可以使用 `continue` 语句来跳过当前循环迭代,直接进入下一次循环迭代。那么对于这段代码,你可以在 `if (!paths[i].empty())` 的后面添加一个 `else` 语句,并在 `else` 语句块中使用 `continue` 语句,代码如下: ``` for (int i = 0; i < agvs.size(); i++) { if (!paths[i].empty()) { painter.setPen(QPen(Qt::red, 2)); for (int j = 0; j < paths[i].size() - 1; j++) { painter.drawLine(paths[i][j]->x, paths[i][j]->y, paths[i][j+1]->x, paths[i][j+1]->y); } } else { continue; } } ``` 这样,当 `paths[i]` 为空时,就会跳过内部的循环迭代。
相关问题

//輸出path for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < paths[i].size(); j++) { _MAP[paths[i][j]->x][ paths[i][j]->y] = 5; } } //模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; //node_Value[next_node->x][next_node->y] = 10; QTimer::singleShot(time, this, [&, i, next_node]() { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); this->update(); // 在窗口中重绘 }); } } //如果任務完成停止定時器 for (int i = 0; i < tasks.size(); i++) { if (tasks[i].completed != 2) { allTasksCompleted = false; break; } } if (allTasksCompleted) { timer->stop(); update(); } } },添加黨agv的current坐標輸入_MAP中,值為0

可以在第一个 for 循环中添加以下代码来实现: ``` for (int i = 0; i < agvs.size(); i++) { _MAP[agvs[i].getCurrentX()][agvs[i].getCurrentY()] = 0; } ``` 这样就可以将所有 AGV 的当前位置对应的地图值设为 0。完整的代码如下: ``` for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < paths[i].size(); j++) { _MAP[paths[i][j]->x][paths[i][j]->y] = 5; } } for (int i = 0; i < agvs.size(); i++) { _MAP[agvs[i].getCurrentX()][agvs[i].getCurrentY()] = 0; } for (int i = 0; i < agvs.size(); i++) { if (!paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; QTimer::singleShot(time, this, [&, i, next_node]() { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); this->update(); }); } } for (int i = 0; i < tasks.size(); i++) { if (tasks[i].completed != 2) { allTasksCompleted = false; break; } } if (allTasksCompleted) { timer->stop(); update(); } ```

for (int i = 0; i < agvs.size(); i++) { if (!paths[i].empty()) { Node* prev_node = nullptr; for (Node* next_node : paths[i]) { if (prev_node) { painter.drawLine(prev_node->x, prev_node->y, next_node->x, next_node->y); } prev_node = next_node; } },一運行就卡死,修改一下

可以尝试加上一些调试语句来确定问题出在哪里,比如在循环中加上打印语句: ``` for (int i = 0; i < agvs.size(); i++) { if (!paths[i].empty()) { Node* prev_node = nullptr; for (Node* next_node : paths[i]) { if (prev_node) { painter.drawLine(prev_node->x, prev_node->y, next_node->x, next_node->y); } prev_node = next_node; qDebug() << "Drawing line from (" << prev_node->x << "," << prev_node->y << ") to (" << next_node->x << "," << next_node->y << ")"; } } } ``` 这样可以看到哪一步出现了问题,进而进行调整。另外,如果是卡死的话,也可以考虑加上一些限制条件,比如最多只画几百个线段,或者加上一个定时器,每隔一段时间才画一条线段,防止一次性画太多导致卡死。
阅读全文

相关推荐

void MainWindow::moveAgvs_(){ timer =new QTimer(this); timer->start(1000); connect(timer, &QTimer::timeout, this, &MainWindow::moveAgvs);} void MainWindow::moveAgvs() { Astar astar; std::vector<Node*> path; std::vector<std::vector<Node*>> paths(agvs.size()); // 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node; if (agvs[i].getLoad() == false) { end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); } else { end_node = new Node(agvs[i].getEndX(), agvs[i].getEndY()); } std::vector<Node*> path = astar.getPath(start_node, end_node); paths[i] = path; //輸出agv的路綫 std::cout << "AGV " << i << " path: "; for (int j = 0; j < path.size(); j++) { std::cout << "(" << path[j]->x << ", " <y << ")"; if (j != path.size() - 1) { std::cout << " -> "; } } std::cout << std::endl; } for (int i = 0; i < agvs.size(); i++) { if (! paths[i].empty()) { Node* next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; QTimer::singleShot(time, this, &, i, next_node { agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); std::cout << "AGV " << agvs[i].getid() << " current_x: " << agvs[i].getCurrentX() << " current_y: " << agvs[i].getCurrentY() <<std::endl; this->update(); if (next_node->x == agvs[i].getEndX() && next_node->y == agvs[i].getEndY()) { //task_to_agv(i); } }); } } },agv沒有模擬運行,修改一下

for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad()){ painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)*25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agvload.png").scaled(25,25)); } else { painter.drawPixmap(agvs[i].getCurrentX()*25+200-(nodeSpacing-nodeSize)/2,(agvs[i].getCurrentY()+1)25+50-(nodeSpacing-nodeSize)/2,25,25,QPixmap(":/new/prefix1/agv1.png").scaled(25,25)); },//模擬小車行駛 for (int i = 0; i < agvs.size(); i++) { for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (tasks[completed_task_index].completed == 2 ) { // 如果已经完成任务 paths[i].clear(); continue; // 跳过此次循环 } if (! paths[i].empty()) { int cur_x = agvs[i].getCurrentX(); int cur_y = agvs[i].getCurrentY(); Node next_node = paths[i][0]; float speed = agvs[i].getSpeed(); float distance = sqrt(pow(next_node->x - agvs[i].getCurrentX(), 2) + pow(next_node->y - agvs[i].getCurrentY(), 2)); float time = distance / speed * 1000; // 计算电量的减少量 float power_consumption = distance /20; //_MAP[cur_x][cur_y] = 1; QTimer::singleShot(time, this, &, i, next_node, cur_x, cur_y, power_consumption { // 离开当前位置时将标记设为0 //MAP[cur_x][cur_y] = 0; agvs[i].setCurrentX(next_node->x); agvs[i].setCurrentY(next_node->y); // 更新电量 agvs[i].setpower(agvs[i].power- power_consumption); this->update(); // 在窗口中重绘 }); } },修改代碼:讓agv實現貝塞爾曲綫移動

// 得到agv的路綫 for (int i = 0; i < agvs.size(); i++) { if (agvs[i].getLoad() == true) { // 如果是负载的状态 if (agvs[i].getCurrentX() == agvs[i].getEndX() && agvs[i].getCurrentY() == agvs[i].getEndY()) { // 如果到达终点 agvs[i].setLoad(false); // 设置为空载状态 agvs[i].setState(true); std::cout << "agv__id :" << agvs[i].getid() << " ,agv_get_task_id :" << agvs[i].get_task_id() << endl; for (int j = 0; j < tasks.size(); j++) { if (tasks[j].id == agvs[i].get_task_id()) { completed_task_index = j; break; } } if (completed_task_index != -1) { tasks[completed_task_index].completed = 2; } task_to_agv(); // 更新任务分配 update(); // 更新AGV状态 } else { // 否则行驶到终点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node1 = new Node(agvs[i].getEndX(), agvs[i].getEndY()); std::vector<Node*> path = astar.getPath(start_node, end_node1); path.erase(path.begin()); paths[i] = path; } } else { // 如果是空载的状态 if (agvs[i].getCurrentX() == agvs[i].getStartX() && agvs[i].getCurrentY() == agvs[i].getStartY()) { // 如果到达起点 agvs[i].setLoad(true); // 设置为负载状态 } else { // 否则行驶到起点 Node* start_node = new Node(agvs[i].getCurrentX(), agvs[i].getCurrentY()); Node* end_node = new Node(agvs[i].getStartX(), agvs[i].getStartY()); std::vector<Node*> path = astar.getPath(start_node, end_node); path.erase(path.begin()); paths[i] = path; } } }, if (! paths[i].empty()) { // 检查 paths 是否有数据 std:: cout << "wsn" << endl; painter.setPen(QPen(Qt::red, 5)); // 设置画笔颜色和宽度 for (int i = 0; i < paths.size(); i++) { // 遍历每个子数组 painter.setPen(QPen(Qt::red, 5)); // 设置画笔颜色和宽度 for (int j = 0; j < paths[i].size() - 1; j++) { // 遍历每个子数组中的点 QPoint start(paths[i][j]->x * 25 + 200, paths[i][j]->y * 25 + 50); QPoint end(paths[i][j + 1]->x * 25 + 200, paths[i][j + 1]->y * 25 + 50); painter.drawLine(start, end); } } },報錯:一運行就白屏卡死,怎麽修改

最新推荐

recommend-type

【BP回归预测】蜣螂算法优化BP神经网络DBO-BP光伏数据预测(多输入单输出)【Matlab仿真 5175期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

西红柿成熟度分割数据集labelme格式686张3类别.zip

样本图:blog.csdn.net/2403_88102872/article/details/144566118 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件) 图片数量(jpg文件个数):686 标注数量(json文件个数):686 标注类别数:3 标注类别名称:["unripe","ripe","rotten"] 每个类别标注的框数: unripe count = 2452 ripe count = 1268 rotten count = 710 使用标注工具:labelme=5.5.0 标注规则:对类别进行画多边形框polygon 重要说明:可以将数据集用labelme打开编辑,json数据集需自己转成mask或者yolo格式或者coco格式作语义分割或者实例分割 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
recommend-type

RustCryptopals学习密码学和安全概念的工具集

这个项目是一个全面的密码学学习工具,适合作为Rust编程和密码学入门项目。希望这个项目能帮助你提升Rust编程技能,并深入理解密码学原理!
recommend-type

LabSpec6 软件功能参考文献

LabSpec6 软件功能参考文献
recommend-type

【BP回归预测】基于matlab凌日算法优化BP神经网络TSOA-BP光伏数据预测(多输入单输出)【Matlab仿真 5170期】.zip

CSDN Matlab研究室上传的资料均有对应的仿真结果图,仿真结果图均是完整代码运行得出,完整代码亲测可用,适合小白; 1、完整的代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

PureMVC AS3在Flash中的实践与演示:HelloFlash案例分析

资源摘要信息:"puremvc-as3-demo-flash-helloflash:PureMVC AS3 Flash演示" PureMVC是一个开源的、轻量级的、独立于框架的用于MVC(模型-视图-控制器)架构模式的实现。它适用于各种应用程序,并且在多语言环境中得到广泛支持,包括ActionScript、C#、Java等。在这个演示中,使用了ActionScript 3语言进行Flash开发,展示了如何在Flash应用程序中运用PureMVC框架。 演示项目名为“HelloFlash”,它通过一个简单的动画来展示PureMVC框架的工作方式。演示中有一个小蓝框在灰色房间内移动,并且可以通过多种方式与之互动。这些互动包括小蓝框碰到墙壁改变方向、通过拖拽改变颜色和大小,以及使用鼠标滚轮进行缩放等。 在技术上,“HelloFlash”演示通过一个Flash电影的单帧启动应用程序。启动时,会发送通知触发一个启动命令,然后通过命令来初始化模型和视图。这里的视图组件和中介器都是动态创建的,并且每个都有一个唯一的实例名称。组件会与他们的中介器进行通信,而中介器则与代理进行通信。代理用于保存模型数据,并且中介器之间通过发送通知来通信。 PureMVC框架的核心概念包括: - 视图组件:负责显示应用程序的界面部分。 - 中介器:负责与视图组件通信,并处理组件之间的交互。 - 代理:负责封装数据或业务逻辑。 - 控制器:负责管理命令的分派。 在“HelloFlash”中,我们可以看到这些概念的具体实现。例如,小蓝框的颜色变化,是由代理来处理的模型数据;而小蓝框的移动和缩放则是由中介器与组件之间的通信实现的。所有这些操作都是在PureMVC框架的规则和指导原则下完成的。 在Flash开发中,ActionScript 3是主要的编程语言,它是一种面向对象的语言,并且支持复杂的事件处理和数据管理。Flash平台本身提供了一套丰富的API和框架,使得开发者可以创建动态的、交互性强的网络应用。 最后,我们还看到了一个压缩包文件的名称列表“puremvc-as3-demo-flash-helloflash-master”,这表明该演示项目的源代码应该可以在该压缩包中找到,并且可以在支持ActionScript 3的开发环境中进行分析和学习。开发者可以通过这个项目的源代码来深入了解PureMVC框架在Flash应用中的应用,并且学习到如何实现复杂的用户交互、数据处理和事件通信。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

YRC1000 EtherNet_IP通信协议:掌握连接与数据交换的6个关键策略

![YRC1000 EtherNetIP通信功能说明书](https://5.imimg.com/data5/SELLER/Default/2022/12/EE/XV/JL/4130645/yrc1000-csra-cdc101aa-3--1000x1000.jpg) # 摘要 YRC1000 EtherNet/IP通信协议作为工业自动化领域的重要技术之一,本论文对其进行了系统性的介绍和分析。从通信连接策略的实施到数据交换机制的详细阐述,再到高级应用与实践案例的深入探讨,本文全面覆盖了YRC1000的操作原理、配置方法、安全性和性能监控等方面。通过对各种典型应用场景的案例分析,本文不仅总结了
recommend-type

如何设置 OpenFileDialog 用户只能在固定文件夹及其子文件夹里选择文件

在Windows应用程序中,如果你想要限制OpenFileDialog让用户只能在特定的文件夹及其子文件夹中选择文件,你可以通过设置`InitialDirectory`属性和`Filter`属性来实现。以下是步骤: 1. 创建一个`OpenFileDialog`实例: ```csharp OpenFileDialog openFileDialog = new OpenFileDialog(); ``` 2. 设置初始目录(`InitialDirectory`)为你要限制用户选择的起始文件夹,例如: ```csharp string restrictedFolder = "C:\\YourR
recommend-type

掌握Makefile多目标编译与清理操作

资源摘要信息:"makefile学习用测试文件.rar" 知识点: 1. Makefile的基本概念: Makefile是一个自动化编译的工具,它可以根据文件的依赖关系进行判断,只编译发生变化的文件,从而提高编译效率。Makefile文件中定义了一系列的规则,规则描述了文件之间的依赖关系,并指定了如何通过命令来更新或生成目标文件。 2. Makefile的多个目标: 在Makefile中,可以定义多个目标,每个目标可以依赖于其他的文件或目标。当执行make命令时,默认情况下会构建Makefile中的第一个目标。如果你想构建其他的特定目标,可以在make命令后指定目标的名称。 3. Makefile的单个目标编译和删除: 在Makefile中,单个目标的编译通常涉及依赖文件的检查以及编译命令的执行。删除操作则通常用clean规则来定义,它不依赖于任何文件,但执行时会删除所有编译生成的目标文件和中间文件,通常不包含源代码文件。 4. Makefile中的伪目标: 伪目标并不是一个文件名,它只是一个标签,用来标识一个命令序列,通常用于执行一些全局性的操作,比如清理编译生成的文件。在Makefile中使用特殊的伪目标“.PHONY”来声明。 5. Makefile的依赖关系和规则: 依赖关系说明了一个文件是如何通过其他文件生成的,规则则是对依赖关系的处理逻辑。一个规则通常包含一个目标、它的依赖以及用来更新目标的命令。当依赖的时间戳比目标的新时,相应的命令会被执行。 6. Linux环境下的Makefile使用: Makefile的使用在Linux环境下非常普遍,因为Linux是一个类Unix系统,而make工具起源于Unix系统。在Linux环境中,通过终端使用make命令来执行Makefile中定义的规则。Linux中的make命令有多种参数来控制执行过程。 7. Makefile中变量和模式规则的使用: 在Makefile中可以定义变量来存储一些经常使用的字符串,比如编译器的路径、编译选项等。模式规则则是一种简化多个相似规则的方法,它使用模式来匹配多个目标,适用于文件名有规律的情况。 8. Makefile的学习资源: 学习Makefile可以通过阅读相关的书籍、在线教程、官方文档等资源,推荐的书籍有《Managing Projects with GNU Make》。对于初学者来说,实际编写和修改Makefile是掌握Makefile的最好方式。 9. Makefile的调试和优化: 当Makefile较为复杂时,可能出现预料之外的行为,此时需要调试Makefile。可以使用make的“-n”选项来预览命令的执行而不实际运行它们,或者使用“-d”选项来输出调试信息。优化Makefile可以减少不必要的编译,提高编译效率,例如使用命令的输出作为条件判断。 10. Makefile的学习用测试文件: 对于学习Makefile而言,实际操作是非常重要的。通过提供一个测试文件,可以更好地理解Makefile中目标的编译和删除操作。通过编写相应的Makefile,并运行make命令,可以观察目标是如何根据依赖被编译和在需要时如何被删除的。 通过以上的知识点,你可以了解到Makefile的基本用法和一些高级技巧。在Linux环境下,利用Makefile可以有效地管理项目的编译过程,提高开发效率。对于初学者来说,通过实际编写Makefile并结合测试文件进行练习,将有助于快速掌握Makefile的使用。