用邻接矩阵法创建有向图,编写算法,实现图的深度优先遍历,输出遍历序列。

时间: 2023-08-07 07:00:39 浏览: 467
### 回答1: 首先,我们需要了解什么是邻接矩阵法。邻接矩阵法是一种用矩阵来表示图的方法,其中矩阵的行和列分别代表图中的顶点,矩阵中的元素表示两个顶点之间是否有边相连。对于有向图,邻接矩阵是一个n*n的矩阵,其中第i行第j列的元素表示从顶点i到顶点j是否有一条有向边。 接下来,我们需要编写算法来实现图的深度优先遍历。深度优先遍历是一种遍历图的方式,它从一个顶点开始,沿着一条路径一直走到底,直到不能再走为止,然后返回到上一个顶点,继续走下一条路径,直到遍历完整个图。 算法步骤如下: 1. 从图中任意一个顶点开始遍历,将该顶点标记为已访问。 2. 访问该顶点的所有未被访问的邻居顶点,对于每个邻居顶点,重复步骤1和步骤2,直到所有邻居顶点都被访问过。 3. 如果当前顶点的所有邻居顶点都已经被访问过,返回上一个顶点,继续访问它的未被访问的邻居顶点。 4. 重复步骤1到步骤3,直到所有顶点都被访问过。 最后,输出遍历序列即可。 代码实现如下: ``` #include <iostream> #include <stack> using namespace std; const int MAXN = 100; int graph[MAXN][MAXN]; // 邻接矩阵 bool visited[MAXN]; // 标记是否已访问 void DFS(int start, int n) { stack<int> s; s.push(start); visited[start] = true; cout << start << " "; while (!s.empty()) { int cur = s.top(); bool flag = false; for (int i = ; i < n; i++) { if (graph[cur][i] && !visited[i]) { s.push(i); visited[i] = true; cout << i << " "; flag = true; break; } } if (!flag) { s.pop(); } } } int main() { int n, m; cin >> n >> m; for (int i = ; i < m; i++) { int u, v; cin >> u >> v; graph[u][v] = 1; } for (int i = ; i < n; i++) { if (!visited[i]) { DFS(i, n); } } return ; } ``` 其中,n表示图中顶点的个数,m表示图中边的个数。输入时,先输入n和m,然后输入m条边的起点和终点。输出时,按照遍历顺序输出每个顶点的编号。 ### 回答2: 有向图是一种图论中的数据结构,其中的边带有方向。邻接矩阵是一种表示图的方法,通过一个二维数组来表示图中顶点之间的连接关系。 邻接矩阵的创建可以通过一个二维数组来实现,数组的大小为n*n,其中n为图的顶点数。对于有向图而言,若存在一条从顶点i到顶点j的有向边,则在邻接矩阵中的第i行第j列元素为1,否则为0。 深度优先遍历(Depth-First Search, DFS)是一种用于遍历或搜索树或图的算法。其基本思想是先访问子节点,再访问子节点的子节点,以此类推,直到到达树或图的最底层。遍历时通过栈(Stack)数据结构存储和访问节点。 实现图的深度优先遍历的算法如下: 1. 初始化一个栈,用于存储待访问的节点。 2. 初始化一个布尔数组,用于标记节点是否已被访问。 3. 从图的任意节点开始,将其入栈,并标记为已访问。 4. 循环进行以下步骤,直到栈为空: 1) 从栈中弹出一个节点,并输出其数据。 2) 遍历该节点的所有邻接节点,若邻接节点未被访问,则将其入栈,并标记为已访问。 5. 遍历结束。 通过邻接矩阵法创建的有向图的深度优先遍历算法可以按照上述步骤实现。可以使用一个额外的数组来记录访问顺序,每次从栈中弹出的节点都记录下来,最终输出即为遍历序列。 这是一个基本的有向图深度优先遍历的实现算法。根据具体的应用场景和需求,还可以进行不同的优化和扩展,例如添加一些条件判断、路径记录等。 ### 回答3: 深度优先遍历(Depth First Search, DFS)是一种图遍历的方式,它从某个顶点开始,沿着路径一直走到底,直到达到没有未访问过的邻接点为止,然后退回到上一个顶点,继续遍历其他的未访问过的顶点,直到所有顶点都被访问过。 要使用邻接矩阵法创建有向图,并编写算法实现深度优先遍历,可以按照以下步骤进行: 1. 创建一个大小为n*n的邻接矩阵,n代表图的顶点数。初始时,将所有元素初始化为0。 2. 根据图中的有向边信息,将邻接矩阵中对应的位置上的元素置为1,表示有一条边从一个顶点指向另一个顶点。 3. 创建一个大小为n的一维数组visited,用于记录顶点的访问状态。初始时,将所有元素设置为False,表示该顶点未被访问过。 4. 选择一个起始顶点start,将visited[start]设置为True,并将start加入到遍历序列中。 5. 从start开始,遍历所有邻接顶点,如果邻接顶点未被访问过,则将其设置为已访问并将其加入到遍历序列中。然后,递归调用深度优先遍历函数,以该邻接顶点为起始顶点。 6. 重复步骤5,直到所有顶点都被访问过。 下面是一个示例的Python代码实现: ```python def dfs(adj_matrix, visited, start, traversal): visited[start] = True traversal.append(start) for i in range(len(adj_matrix[start])): if adj_matrix[start][i] == 1 and not visited[i]: dfs(adj_matrix, visited, i, traversal) return traversal # 创建邻接矩阵 n = 4 # 顶点数 adj_matrix = [[0, 1, 1, 0], [0, 0, 1, 0], [1, 0, 0, 1], [0, 0, 0, 1]] # 初始化访问数组 visited = [False] * n # 从起始顶点0开始深度优先遍历 start = 0 traversal = dfs(adj_matrix, visited, start, []) print("遍历序列:", traversal) ``` 以上代码示例创建了一个4个顶点的邻接矩阵,并从起始顶点0开始进行深度优先遍历。输出结果为遍历序列:[0, 1, 2, 3]。
阅读全文

相关推荐

最新推荐

recommend-type

邻接表或者邻接矩阵为存储结构实现连通无向图的深度优先和广度优先遍历

在这个程序设计任务中,我们需要实现的是连通无向图的深度优先遍历(DFS)和广度优先遍历(BFS),这两种遍历方法是图算法的基础。无向图指的是图中的边没有方向,即任意两个节点之间可以双向连接。 1. **邻接表和...
recommend-type

ta-lib-0.5.1-cp312-cp312-win32.whl

ta_lib-0.5.1-cp312-cp312-win32.whl
recommend-type

在线实时的斗兽棋游戏,时间赶,粗暴的使用jQuery + websoket 实现实时H5对战游戏 + java.zip课程设计

课程设计 在线实时的斗兽棋游戏,时间赶,粗暴的使用jQuery + websoket 实现实时H5对战游戏 + java.zip课程设计
recommend-type

ta-lib-0.5.1-cp310-cp310-win-amd64.whl

ta_lib-0.5.1-cp310-cp310-win_amd64.whl
recommend-type

基于springboot+vue物流系统源码数据库文档.zip

基于springboot+vue物流系统源码数据库文档.zip
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。