input_size = window_size-stride_size windows_per_series = np.full((num_series), (time_len-input_size) // stride_size)
时间: 2023-11-25 09:06:22 浏览: 71
这行代码的作用是计算数据集中每个时间序列中可以产生多少个滑动窗口。其中,`input_size` 表示每个窗口中包含的时间步数,`window_size` 表示窗口的大小,`stride_size` 表示窗口每次滑动的步长。因此,`input_size = window_size - stride_size`。
`num_series` 表示数据集中时间序列的数量,`time_len` 表示每个时间序列的长度。由于最后一个窗口可能不足 `input_size` 个时间步,因此这里用整除操作符 `//` 计算出每个时间序列中可生成的窗口数量,并将其存储在一个长度为 `num_series` 的数组 `windows_per_series` 中。这里使用了 NumPy 的 `full()` 方法,将数组中的所有元素初始化为相同的值,即每个时间序列中可生成的窗口数量。
相关问题
super(myYOLO, self).__init__() self.device = device self.num_classes = num_classes self.trainable = trainable self.conf_thresh = conf_thresh self.nms_thresh = nms_thresh self.stride = 32 self.grid_cell = self.create_grid(input_size) self.input_size = input_size self.scale = np.array([[[input_size[1], input_size[0], input_size[1], input_size[0]]]]) self.scale_torch = torch.tensor(self.scale.copy(), device=device).float()解释代码
这段代码是myYOLO类的构造函数(`__init__`方法)中的一部分,用于初始化myYOLO类的实例对象。下面是对代码逐行的解释:
1. `super(myYOLO, self).__init__()`: 这行代码调用了父类(nn.Module)的构造函数,以确保myYOLO类继承了nn.Module的属性和方法。
2. `self.device = device`: 将输入的`device`参数赋值给模块的`device`属性,用于指定模型在哪个设备上运行。
3. `self.num_classes = num_classes`: 将输入的`num_classes`参数赋值给模块的`num_classes`属性,表示目标类别的数量。
4. `self.trainable = trainable`: 将输入的`trainable`参数赋值给模块的`trainable`属性,表示模型参数是否可训练。
5. `self.conf_thresh = conf_thresh`: 将输入的`conf_thresh`参数赋值给模块的`conf_thresh`属性,表示目标置信度阈值。
6. `self.nms_thresh = nms_thresh`: 将输入的`nms_thresh`参数赋值给模块的`nms_thresh`属性,表示非极大值抑制(NMS)的阈值。
7. `self.stride = 32`: 设置模型的步长(stride)为32,表示每个网格单元(cell)在输入图像上的相对尺寸。
8. `self.grid_cell = self.create_grid(input_size)`: 调用`create_grid`方法创建网格单元,该方法的作用是在输入图像上创建网格,并返回网格单元的坐标。
9. `self.input_size = input_size`: 将输入的`input_size`参数赋值给模块的`input_size`属性,表示输入图像的尺寸。
10. `self.scale = np.array([[[input_size[1], input_size[0], input_size[1], input_size[0]]]])`: 创建一个形状为(1, 1, 4)的NumPy数组,表示尺度缩放因子。这个数组用于将预测的边界框坐标转换为相对于输入图像的绝对坐标。
11. `self.scale_torch = torch.tensor(self.scale.copy(), device=device).float()`: 将`self.scale`数组复制一份并转换为PyTorch张量,赋值给模块的`scale_torch`属性。这将确保缩放因子张量与设备匹配,并将其数据类型设置为float。
这段代码的作用是在myYOLO类中初始化各种属性,并对一些需要预先计算或初始化的变量进行设置。这些属性和变量将在后续的模型计算中使用。
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=64, kernel_size=32, stride=8, padding=12) self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2) self.BN = nn.BatchNorm1d(num_features=64) self.conv3_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1) self.pool3_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1) self.pool3_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv3_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1) self.pool3_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=5, stride=1, padding=2) self.pool5_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2) self.pool5_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv5_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=5, stride=1, padding=2) self.pool5_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_1 = nn.Conv1d(in_channels=64, out_channels=64, kernel_size=7, stride=1, padding=3) self.pool7_1 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_2 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=7, stride=1, padding=3) self.pool7_2 = nn.MaxPool1d(kernel_size=2, stride=2) self.conv7_3 = nn.Conv1d(in_channels=128, out_channels=256, kernel_size=7, stride=1, padding=3) self.pool7_3 = nn.MaxPool1d(kernel_size=2, stride=2) self.pool2 = nn.MaxPool1d(kernel_size=8, stride=1) self.fc = nn.Linear(in_features=256 * 3, out_features=4) ##这里的256*3是计算出来的 self.softmax = nn.Softmax(),解释各部分的作用和参数选择
这段代码定义了一个名为Net的类,继承了nn.Module类。在初始化函数中,它定义了多个一维卷积层(nn.Conv1d)、最大池化层(nn.MaxPool1d)、BN层(nn.BatchNorm1d)和全连接层(nn.Linear)。这些层用于构建神经网络模型。其中,卷积层、池化层和BN层用于特征提取,全连接层用于分类。此模型的输入是一个通道的一维数据,输出是四个类别的概率分布。
阅读全文