正规方程求解多变量线性回归的公式是怎样的
时间: 2024-04-02 21:31:28 浏览: 52
对于多变量线性回归问题,我们可以使用正规方程方法求解模型的最优参数。具体而言,假设我们有 $m$ 个训练样本,每个样本有 $n$ 个特征,我们可以将所有的训练样本表示为一个 $m \times n$ 的矩阵 $X$,其中每一行表示一个样本,每一列表示一个特征。同时,我们还有一个 $m \times 1$ 的向量 $y$,表示每个样本的目标值。
则多变量线性回归的正规方程解为:
$$\theta = (X^T X)^{-1} X^T y$$
其中,$\theta$ 是一个 $n \times 1$ 的向量,表示模型的参数向量。需要注意的是,$X^T X$ 必须是一个可逆矩阵,否则无法求逆。在实际应用中,如果 $X^T X$ 不可逆,我们可以通过使用伪逆来求解模型参数。
使用正规方程求解多变量线性回归的优点是,它可以直接得到最优参数,无需进行迭代优化,因此速度比梯度下降等迭代算法快。同时,正规方程还可以避免梯度下降等迭代算法中可能出现的局部最优解问题。
需要注意的是,如果特征之间存在较大的相关性,那么 $X^T X$ 可能会接近于奇异矩阵,导致求逆之后数值不稳定。为了避免这个问题,可以使用特征缩放等方法来减小特征之间的相关性。
相关问题
正规方程求解线性回归python
正规方程是一种求解线性回归的方法,它通过求解最小二乘问题,直接得到了线性回归的参数。在Python中,可以使用numpy库中的线性代数函数来计算正规方程。
下面是使用正规方程求解线性回归的步骤:
1. 导入必要的库:import numpy as np
2. 定义正规方程函数:def normalEqn(X, y): theta = np.linalg.inv(X.T@X)@X.T@y return theta
3. 调用正规方程函数计算线性回归参数:final_theta = normalEqn(X, y)
其中X是特征矩阵,y是目标变量向量,final_theta是计算得到的线性回归参数。
正态方程求解 多元线性回归模型
正态方程是一种用于求解多元线性回归模型的方法。它通过最小化损失函数来确定模型的权值。具体来说,正态方程可以通过以下步骤求解多元线性回归模型:
1. 准备数据集,并对数据进行标准化处理,使其满足标准正态分布的要求。
2. 根据数据集的特征变量和目标变量,构建多元线性回归模型。该模型的形式如下:Y = XW + b,其中Y是目标变量,X是特征变量的矩阵,W是权值的向量,b是截距。
3. 定义损失函数,可以选择最小二乘法作为损失函数。最小二乘法的目标是最小化实际值与模型预测值之间的差距的平方和。
4. 使用正态方程求解权值的最优解。正态方程的表达式为:W = (X^T X)^(-1) X^T Y,其中X^T是X的转置,X^(-1)是X的逆矩阵,^表示乘方。
5. 将求解得到的最优权值代入模型中,得到多元线性回归模型的最终形式。
阅读全文