pretrained = torch.load('weights/OSN_UNet_weights.pth') model.load_state_dict(pretrained)
时间: 2024-01-05 10:02:09 浏览: 138
这段代码是用 PyTorch 框架加载预训练模型的方法。其中,`torch.load('weights/OSN_UNet_weights.pth')` 是用于加载预训练模型权重的方法,`'weights/OSN_UNet_weights.pth'` 是预训练模型的路径,您需要将其替换为您自己的预训练模型路径。
`model.load_state_dict(pretrained)` 是将加载的预训练模型权重加载到模型中的方法,其中 `pretrained` 是通过 `torch.load()` 方法加载得到的预训练模型权重。这个方法会将预训练模型的权重赋值给当前模型的权重,因此可以直接使用加载的模型进行预测或微调。
需要注意的是,预训练模型的架构需要与当前模型的架构完全一致才能够成功加载预训练模型权重。如果两者不一致,可以考虑手动调整预训练模型的权重以适应当前模型。
相关问题
这行代码什么意思: pretrained = torch.load('weights/OSN_UNet_weights.pth')
这行代码的作用是从指定路径('weights/OSN_UNet_weights.pth')中加载预训练的模型权重,并将其存储在变量 pretrained 中。在 PyTorch 中,可以使用 torch.load() 函数来加载保存的模型文件。在这个例子中,模型文件的路径是 'weights/OSN_UNet_weights.pth'。
# Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = True if classify: # modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize # modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc = LPRNet(lpr_max_len=8, phase=False, class_num=len(CHARS), dropout_rate=0).to(device) modelc.load_state_dict(torch.load('./weights/Final_LPRNet_model.pth', map_location=torch.device('cpu'))) print("load pretrained model successful!") modelc.to(device).eval()
这段代码的作用是加载模型并进行推理。首先使用`attempt_load()`函数加载FP32模型,并检查输入图片的大小。如果`half`参数为True,则将模型转换为FP16精度。接下来,判断是否需要进行第二阶段的分类操作。如果需要,就加载一个现有的分类器或者创建一个新的分类器。在这个例子中,创建了一个名为`modelc`的LPRNet模型,并加载了预训练的权重。最后,将`modelc`模型转移到设备上,并设置为评估模式。
阅读全文