多段图求s到t的一条长度最短的路径问题伪代码
时间: 2024-12-18 09:38:33 浏览: 4
在求解多段图中从顶点s到顶点t的最短路径问题时,可以使用Dijkstra算法(一种贪心算法),尽管原始Dijkstra算法假设图是加权无向图,但我们可以通过一些调整使其适用于有向图或多段图。以下是简化版的Dijkstra算法伪代码:
```python
// 定义图的邻接矩阵或邻接表
function dijkstra(graph, start, end):
// 初始化距离数组 distance 和标记数组 visited
distance[start] = 0
for each vertex in graph.vertices:
distance[vertex] = infinity // 如果不是起始节点,默认无限大
visited[vertex] = False
// 设置当前最小距离节点为start
current = start
while not visited[end]:
// 更新已访问节点的最短距离
for neighbor in graph.neighbors_of(current):
if graph.has_weighted_edge(current, neighbor) and
distance[neighbor] > distance[current] + graph.weight(current, neighbor):
distance[neighbor] = distance[current] + graph.weight(current, neighbor)
// 找到未访问且相邻节点中有更短路径的节点作为新的current
min_distance_neighbor = None
for unvisited_neighbor in graph.get_unvisited_neighbors():
if min_distance_neighbor is None or distance[unvisited_neighbor] < distance[min_distance_neighbor]:
min_distance_neighbor = unvisited_neighbor
// 标记当前节点已完成处理
visited[current] = True
current = min_distance_neighbor // 更新current为下一个待处理节点
return distance[end]
```
阅读全文