给一个n(1 ≤ n ≤ 2500) 个点 m(1 ≤ m ≤ 6200) 条边的无向图,求 s 到 t 的最短路。 输入格式: 第一行四个由空格隔开的整数 n、m、s、t。 之后的 m 行,每行三个正整数 s i ​ 、t i ​ 、w i ​ (1≤w i ​ ≤10 9 ),表示一条从s i ​ 到 t i ​ 长度为 w i ​ 的边。 输出格式: 一个整数,表示从s 到t 的最短路径长度。数据保证至少存在一条道路。 输入样例: 7 11 5 4 2 4 2 1 4 3 7 2 2 3 4 3 5 7 5 7 3 3 6 1 1 6 3 4 2 4 3 5 6 3 7 2 1 输出样例: 7 注意: 两个顶点之间可能存在多条直接相连的道路。

时间: 2024-01-04 18:03:32 浏览: 37
这是一个经典的最短路径问题,可以使用 Dijkstra 算法或者 Bellman-Ford 算法解决。这里我们介绍 Dijkstra 算法的思路。 Dijkstra 算法是基于贪心策略的最短路径算法,它的基本思想是从起点开始,每次选择当前距离起点最近的一个未被处理的节点,然后以该节点为中心进行扩展,更新与它相邻的节点的距离。具体实现可以用一个小根堆(优先队列)来保存当前距离起点最近的未被处理的节点。 下面是 Dijkstra 算法的伪代码: 1. 初始化:将起点加入小根堆中,并将距离起点的距离设为 0。 2. 取出小根堆中距离起点最近的节点,标记为已处理。 3. 遍历该节点的邻居节点,更新它们到起点的距离(如果比之前的距离更小),并将它们加入小根堆。 4. 重复步骤 2 和 3,直到小根堆为空或者目标节点被处理。 下面是使用 Python 实现 Dijkstra 算法的代码:
相关问题

给一个n(1 ≤ n ≤ 2500) 个点 m(1 ≤ m ≤ 6200) 条边的无向图,求 s 到 t 的最短路。

### 回答1: 题目描述: 给定一个包含n个点和m条边的无向图,求从s到t的最短路径。 解题思路: 可以使用Dijkstra算法或者BFS算法来解决这个问题。 Dijkstra算法: Dijkstra算法是一种贪心算法,它可以求出从一个源点到其他所有点的最短路径。Dijkstra算法的基本思想是:从源点开始,每次选择一个距离源点最近的未标记节点,并将该节点标记为已访问,然后更新与该节点相邻的节点的距离。重复这个过程,直到所有节点都被标记为已访问或者没有未标记的节点可以到达。 BFS算法: BFS算法是一种广度优先搜索算法,它可以求出从一个源点到其他所有点的最短路径。BFS算法的基本思想是:从源点开始,将其加入队列中,然后依次取出队列中的节点,并将与该节点相邻的未访问节点加入队列中。重复这个过程,直到队列为空或者找到目标节点。 代码实现: Dijkstra算法: ``` #include <iostream> #include <queue> #include <vector> #include <cstring> using namespace std; const int MAXN = 2505; const int INF = x3f3f3f3f; struct Edge { int to, w; }; vector<Edge> G[MAXN]; int d[MAXN]; bool vis[MAXN]; void dijkstra(int s) { memset(d, INF, sizeof(d)); memset(vis, false, sizeof(vis)); d[s] = ; priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; q.push(make_pair(, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = true; for (int i = ; i < G[u].size(); i++) { int v = G[u][i].to; int w = G[u][i].w; if (d[v] > d[u] + w) { d[v] = d[u] + w; q.push(make_pair(d[v], v)); } } } } int main() { int n, m, s, t; cin >> n >> m >> s >> t; for (int i = ; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back((Edge){v, w}); G[v].push_back((Edge){u, w}); } dijkstra(s); cout << d[t] << endl; return ; } ``` BFS算法: ``` #include <iostream> #include <queue> #include <vector> #include <cstring> using namespace std; const int MAXN = 2505; const int INF = x3f3f3f3f; struct Edge { int to, w; }; vector<Edge> G[MAXN]; int d[MAXN]; bool vis[MAXN]; void bfs(int s) { memset(d, INF, sizeof(d)); memset(vis, false, sizeof(vis)); d[s] = ; queue<int> q; q.push(s); while (!q.empty()) { int u = q.front(); q.pop(); if (vis[u]) continue; vis[u] = true; for (int i = ; i < G[u].size(); i++) { int v = G[u][i].to; int w = G[u][i].w; if (d[v] > d[u] + w) { d[v] = d[u] + w; q.push(v); } } } } int main() { int n, m, s, t; cin >> n >> m >> s >> t; for (int i = ; i < m; i++) { int u, v, w; cin >> u >> v >> w; G[u].push_back((Edge){v, w}); G[v].push_back((Edge){u, w}); } bfs(s); cout << d[t] << endl; return ; } ``` ### 回答2: 这是经典的最短路问题,可以使用Dijkstra算法、Bellman-Ford算法、Floyd算法等多种算法来解决。 Dijkstra算法是一种贪心算法,适用于没有负权边的图。它从起点开始,每次找到距离起点最近的未访问节点,将它加入已访问集合,并更新其它未访问节点的距离。实现过程可以使用堆优化的优化算法来提高效率。 Bellman-Ford算法可以处理含有负权边的图,但是可能会存在负环,需要进行判断。它通过进行多轮松弛操作来逐步逼近最短路径。可以使用队列优化来优化效率。 Floyd算法是一种动态规划算法,可以求解所有点对之间的最短路径。它通过考虑中间点的方式逐渐逼近最短路径。实现过程是一个三重循环,时间复杂度为O(n^3),适用于数据较小的情况。 需要注意的是,在实际应用中,还可以利用图的性质进行特殊优化,如将有向无环图进行拓扑排序后使用DAG最短路算法,或者利用稀疏图的性质进行优化等。同时,如果需要多次查询最短路径,可以使用预处理算法进行优化,如建立点对之间的最短路径矩阵等。 总之,在实际应用中,需要综合考虑算法的时间复杂度、可靠性、适用性等方面进行选择。 ### 回答3: 对于一个n个点m条边的无向图,我们可以采用迪杰斯特拉算法来求解s到t的最短路。具体方法如下: 1. 初始化:将各个点到起点s的距离标记为无穷大,将起点s到自己的距离置为0,将这些点标记为未访问状态。 2. 执行从各个点到起点s的距离中最小的点,将该点标记为已访问状态。 3. 迭代更新:对于从s点出发连通且未被标记的点v,如果经过已访问且未被标记的点u到达v比已标记点的距离更短,则更新从s到v的最短距离,并将该点标记为未访问。 4. 重复2-3步骤,直到所有点都被标记为已访问状态,或者找到了终点t。 5. 如果在上述过程中找到了s到t的最短路,则返回路径;否则,说明不存在s到t的路径。 在实际应用中,我们可以使用堆优化的方式来实现迪杰斯特拉算法,减小时间复杂度。具体而言,我们可以维护一个小根堆,每次在未访问的点中选择最小距离的点,并将其标记为已访问状态。同时,更新距离时,如果该点的新距离小于原先的距离,则将该点的信息加入堆中,以供下次迭代使用。这样,我们可以在O(mlogn)的时间复杂度内求解s到t的最短路。

有一个n 个点 m 条边的无向图,请求出从 s 到 t 的最短路长度。

这个问题可以使用 Dijkstra 算法或者 Bellman-Ford 算法来解决。 Dijkstra 算法适用于所有边权为正数的情况,时间复杂度为 O(mlogn)。 Bellman-Ford 算法适用于一般情况,包括存在负权边的情况,时间复杂度为 O(nm)。 以下是使用 Dijkstra 算法求解最短路的步骤: 1. 初始化距离数组 dist[],将起点 s 的距离设为 0,其余点的距离设为正无穷。 2. 创建一个优先队列 pq,存储结构为 (dis, u),表示起点到 u 的距离为 dis。 3. 将起点 s 加入队列 pq。 4. 当队列不为空时,取出队首元素 (dis, u)。 5. 如果 u 的距离已经被更新,直接跳过。 6. 更新 u 的距离为 dis。 7. 遍历 u 的所有邻接点 v,如果起点到 v 的距离可以被更新,将 (dis+cost(u, v), v) 加入队列 pq。 8. 重复步骤 4-7,直到队列为空或者 t 被取出。 9. 返回 dist[t],即为起点到 t 的最短路长度。 需要注意的是,如果存在负权边,Dijkstra 算法可能会导致计算结果不正确,此时应该使用 Bellman-Ford 算法。

相关推荐

最新推荐

recommend-type

高校学生选课系统项目源码资源

项目名称: 高校学生选课系统 内容概要: 高校学生选课系统是为了方便高校学生进行选课管理而设计的系统。该系统提供了学生选课、查看课程信息、管理个人课程表等功能,同时也为教师提供了课程发布和管理功能,以及管理员对整个选课系统的管理功能。 适用人群: 学生: 高校本科生和研究生,用于选课、查看课程信息、管理个人课程表等。 教师: 高校教师,用于发布课程、管理课程信息和学生选课情况等。 管理员: 系统管理员,用于管理整个选课系统,包括用户管理、课程管理、权限管理等。 使用场景及目标: 学生选课场景: 学生登录系统后可以浏览课程列表,根据自己的专业和兴趣选择适合自己的课程,并进行选课操作。系统会实时更新学生的选课信息,并生成个人课程表。 教师发布课程场景: 教师登录系统后可以发布新的课程信息,包括课程名称、课程描述、上课时间、上课地点等。发布后的课程将出现在课程列表中供学生选择。 管理员管理场景: 管理员可以管理系统的用户信息,包括学生、教师和管理员账号的添加、删除和修改;管理课程信息,包括课程的添加、删除和修改;管理系统的权限控制,包括用户权限的分配和管理。 目标: 为高校学生提
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

tinyplay /storage/BFEF-19EE/wav.wav -D 0 cannot open device 0 for card 0 Unable to open PCM device 0.

这个错误信息可能是由于无法打开PCM设备0导致的。请检查以下几个方面,以便解决这个问题: 1. 你是否有足够的权限来访问该设备? 2. 检查一下PCM设备0是否已经被其他程序占用了。 3. 确认一下你的PCM设备是否已经被正确地配置和设置。 4. 检查一下你的系统是否有足够的内存和资源来支持你的PCM设备。 如果以上几个方面都检查过了,仍然无法解决问题,你可以尝试使用其他的设备号或者采用其他的操作系统来测试这个问题。
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。