num_iter = num_data // batch_size什么意思
时间: 2024-05-27 19:07:46 浏览: 90
这段代码是用来计算训练过程中的迭代次数的。其中,num_data表示训练数据的总样本数,batch_size表示每个batch中包含的样本数。
num_data // batch_size表示将num_data除以batch_size向下取整得到的整数。这个整数表示在每个epoch中,可以将所有训练数据分成多少个batch。
因此,num_iter = num_data // batch_size就是计算出了每个epoch中的迭代次数,也就是要将所有训练数据分成多少个batch进行训练。
相关问题
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
这是用来做什么的?
这行代码是用来创建一个 PyTorch 的 DataLoader 对象,用于将数据集 mnist_train 分批次地读取到模型中进行训练。其中,batch_size 参数设置每个批次的数据量,shuffle 参数表示是否打乱数据集顺序,num_workers 参数表示使用多少个进程来并行载入数据。
解读这段代码def val(val_set, max_iter=100, flag=False): print('Start val') data_loader = torch.utils.data.DataLoader( val_set, shuffle=True, batch_size=opt.batchSize, num_workers=int(opt.workers)) val_iter = iter(data_loader) n_correct = 0 loss_avg = utils.averager() if not flag: max_iter = min(max_iter, len(data_loader)) else: max_iter = max(max_iter, len(data_loader)) for i in range(max_iter): # data = val_iter.next() # # data = next(val_iter) # try: # data=next(val_iter) # except StopIteration: # return try: data = val_iter.next() except: val_iter = iter(data_loader) # 再次读取,获取数据 data = val_iter.next() cpu_images, cpu_texts = data batch_size = cpu_images.size(0) utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts) utils.loadData(text, t) utils.loadData(length, l) with torch.no_grad(): crnn.eval() preds = crnn(image) crnn.train() preds_size = torch.IntTensor([preds.size(0)] * batch_size) cost = criterion(preds, text, preds_size, length) loss_avg.add(cost) _, preds = preds.max(2) preds = preds.transpose(1, 0).contiguous().view(-1) sim_preds = converter.decode(preds.data, preds_size.data, raw=False) for pred, target in zip(sim_preds, cpu_texts): if pred == target: n_correct += 1
这段代码是一个用于验证模型的函数。它接收一个数据集 `val_set`,将其封装成一个 `DataLoader` 对象,并迭代 `max_iter` 次进行验证。如果 `flag` 为 `False`,则 `max_iter` 不得超过数据集的长度;否则 `max_iter` 不得小于数据集的长度。在每次迭代中,函数从 `val_iter` 中获取一个批次的数据,并将其传入模型进行预测。然后计算预测结果与真实标签之间的损失,并将其加入到 `loss_avg` 中。同时,函数还统计了预测正确的数量 `n_correct`。最后,函数返回 `n_correct` 和 `loss_avg`。
阅读全文