图的最短路径算法代码

时间: 2023-09-13 22:05:12 浏览: 24
这里给出Dijkstra算法和Bellman-Ford算法的Python代码实现。 Dijkstra算法代码实现: ```python import heapq def dijkstra(graph, start): # 初始化距离字典 dist = {node: float('inf') for node in graph} dist[start] = 0 # 初始化堆 heap = [(start, 0)] heapq.heapify(heap) while heap: # 弹出堆中距离最小的节点 curr_node, curr_dist = heapq.heappop(heap) # 如果当前节点已经访问过,则跳过 if curr_dist > dist[curr_node]: continue # 遍历当前节点的相邻节点 for neighbor, weight in graph[curr_node].items(): # 计算从起点到相邻节点的距离 distance = dist[curr_node] + weight # 如果计算出的距离比已知的距离更短,则更新距离 if distance < dist[neighbor]: dist[neighbor] = distance # 将相邻节点加入堆中 heapq.heappush(heap, (neighbor, distance)) return dist ``` Bellman-Ford算法代码实现: ```python def bellman_ford(graph, start): # 初始化距离字典 dist = {node: float('inf') for node in graph} dist[start] = 0 # 遍历所有边,更新距离 for _ in range(len(graph) - 1): for node in graph: for neighbor, weight in graph[node].items(): if dist[node] + weight < dist[neighbor]: dist[neighbor] = dist[node] + weight # 检查是否存在负权重环 for node in graph: for neighbor, weight in graph[node].items(): if dist[node] + weight < dist[neighbor]: raise ValueError("存在负权重环") return dist ``` 这两个算法的时间复杂度都是$O(ElogV)$,其中$E$是边的数量,$V$是节点的数量。

相关推荐

最新推荐

recommend-type

最短路径算法源码 VB

最短路径算法源码 VB 用于计算运筹学最短路问题 vbsheji
recommend-type

最短路径算法源码(VB).doc

最短路径查询程序,速度特快,3万节点,35000条路全部遍历,只需1秒。现将最短路径的思路告诉大家,希望大家在优化,并用不同语言编制,
recommend-type

校园最短路径漫游代码.doc

编译软件平台是HBuilder,使用了高德地图的API接口,实现了校园最短路径的漫游,核心算法是Floyd算法,代码可实现
recommend-type

Python基于Floyd算法求解最短路径距离问题实例详解

主要介绍了Python基于Floyd算法求解最短路径距离问题,结合完整实例形式详细分析了Python使用Floyd算法求解最短路径距离问题的相关操作技巧与注意事项,需要的朋友可以参考下
recommend-type

最短路径算法导航(附C++代码)

给出校园各点间距离,用floyd算法求出任意两点间的最短路径,以此来进行导航
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。