python将已知坐标点转换至霍夫参数空间,并显示坐标点霍夫空间下的二维图像
时间: 2023-09-17 14:12:19 浏览: 122
以下是Python代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义坐标点
points = np.array([[2, 4], [5, 6], [7, 8], [9, 10], [11, 12]])
# 将坐标点转换至霍夫参数空间
theta = np.linspace(-np.pi/2, np.pi/2, 180) # 角度范围
cos_t = np.cos(theta)
sin_t = np.sin(theta)
num_theta = len(theta)
accumulator = np.zeros((2*num_theta, )) # 霍夫参数空间
for point in points:
for i in range(num_theta):
rho = point[0]*cos_t[i] + point[1]*sin_t[i]
index = int(round(i + num_theta + rho/np.pi))
accumulator[index] += 1
# 显示坐标点霍夫空间下的二维图像
plt.imshow(accumulator.reshape((2*num_theta, 1)), cmap='gray')
plt.xlabel('theta')
plt.ylabel('rho')
plt.show()
```
这段代码中,我们定义了一个包含5个二维坐标点的数组 `points`。然后,我们使用 `np.linspace` 函数定义了一个角度范围 `theta`,并计算了每个角度对应的余弦值和正弦值。接着,我们创建了一个大小为 `(2*num_theta,)` 的零向量 `accumulator`,用于存储霍夫参数空间中的计数器。接着,我们遍历每个坐标点,并在每个角度上计算对应的霍夫参数 `rho`,并将计数器相应位置的值加一。最后,我们将计数器的形状转换为 `(2*num_theta, 1)`,并使用 `plt.imshow` 函数显示该图像。
阅读全文
相关推荐


















