用python3.6的版本 四叉树均匀特征点
时间: 2023-09-26 09:11:29 浏览: 84
torch-1.4.0-cp36-cp36m-linux_aarch64.whl
四叉树是一种数据结构,用于对空间进行划分和查询。在计算机图形学和计算机视觉中,四叉树常用于均匀地对特征点进行采样和描述。下面是一个使用Python 3.6实现的四叉树均匀特征点采样程序。
```python
import numpy as np
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
class QuadTree:
def __init__(self, x1, y1, x2, y2, depth=0, max_depth=10, max_points=10):
self.x1 = x1
self.y1 = y1
self.x2 = x2
self.y2 = y2
self.depth = depth
self.max_depth = max_depth
self.max_points = max_points
self.points = []
self.children = []
def add_point(self, point):
if len(self.children) == 0:
self.points.append(point)
if len(self.points) > self.max_points and self.depth < self.max_depth:
self.split()
else:
for child in self.children:
if self.is_inside(child, point):
child.add_point(point)
break
def is_inside(self, child, point):
return child.x1 <= point.x <= child.x2 and child.y1 <= point.y <= child.y2
def split(self):
cx = (self.x1 + self.x2) / 2
cy = (self.y1 + self.y2) / 2
self.children.append(QuadTree(self.x1, self.y1, cx, cy, self.depth+1, self.max_depth, self.max_points))
self.children.append(QuadTree(cx, self.y1, self.x2, cy, self.depth+1, self.max_depth, self.max_points))
self.children.append(QuadTree(self.x1, cy, cx, self.y2, self.depth+1, self.max_depth, self.max_points))
self.children.append(QuadTree(cx, cy, self.x2, self.y2, self.depth+1, self.max_depth, self.max_points))
for point in self.points:
self.add_point(point)
self.points = []
def get_points(self):
if len(self.children) > 0:
points = []
for child in self.children:
points.extend(child.get_points())
return points
else:
return self.points
def uniform_sampling(width, height, num_points):
points = []
tree = QuadTree(0, 0, width, height, max_depth=10, max_points=10)
for i in range(num_points):
point = Point(np.random.randint(0, width), np.random.randint(0, height))
tree.add_point(point)
return tree.get_points()
if __name__ == '__main__':
width = 640
height = 480
num_points = 100
points = uniform_sampling(width, height, num_points)
print(len(points))
```
这个程序使用了一个Point类来表示二维空间中的点,使用一个QuadTree类来表示四叉树数据结构。uniform_sampling函数使用QuadTree来对空间进行均匀采样,并返回采样点的集合。在主函数中,我们使用这个函数来采样一个640x480的空间,共100个点,并输出采样点的数量。
请注意,这个程序中的QuadTree实现并没有考虑空间中已有的点的分布情况,因此不能保证采样结果的质量。如果需要更高质量的采样,可以考虑使用基于能量的方法来优化采样点的分布。
阅读全文