压缩感知 python实现
时间: 2023-12-04 13:03:54 浏览: 161
压缩感知(Compressed Sensing)是一种新兴的信号采集和重构技术,它通过对信号进行压缩和稀疏表示,实现对信号的高效采集和重构。下面是一个基于Python实现的压缩感知示例。
首先安装必要的Python包,包括Numpy、Matplotlib、Scipy:
```
pip install numpy matplotlib scipy
```
接着定义一个随机矩阵,用于对信号进行采样:
```
import numpy as np
# 随机矩阵大小
n = 500
m = 100
# 生成随机矩阵
A = np.random.randn(m, n)
```
定义一个信号x,假设它是一个稀疏的信号:
```
# 信号大小
N = 500
# 生成一个稀疏信号
k = 20
x = np.zeros(N)
q = np.random.choice(N, k, replace=False)
x[q] = np.random.randn(k)
```
对信号进行采样并重构:
```
from scipy.optimize import minimize
# 采样
y = np.dot(A, x)
# 重构
def l1_minimization(x, A, y):
return np.linalg.norm(x, 1)
def constraint(A, y):
def f(x):
return np.linalg.norm(np.dot(A, x) - y)
return f
res = minimize(l1_minimization, np.zeros(N), args=(A, y), method='L-BFGS-B', constraints={'fun': constraint(A, y)})
x_hat = res.x
```
最后绘制重构后的信号和原信号的比较图:
```
import matplotlib.pyplot as plt
plt.plot(x, label='Original Signal')
plt.plot(x_hat, label='Reconstructed Signal')
plt.legend()
plt.show()
```
完整代码如下:
```
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
# 随机矩阵大小
n = 500
m = 100
# 生成随机矩阵
A = np.random.randn(m, n)
# 信号大小
N = 500
# 生成一个稀疏信号
k = 20
x = np.zeros(N)
q = np.random.choice(N, k, replace=False)
x[q] = np.random.randn(k)
# 采样
y = np.dot(A, x)
# 重构
def l1_minimization(x, A, y):
return np.linalg.norm(x, 1)
def constraint(A, y):
def f(x):
return np.linalg.norm(np.dot(A, x) - y)
return f
res = minimize(l1_minimization, np.zeros(N), args=(A, y), method='L-BFGS-B', constraints={'fun': constraint(A, y)})
x_hat = res.x
# 绘制信号
plt.plot(x, label='Original Signal')
plt.plot(x_hat, label='Reconstructed Signal')
plt.legend()
plt.show()
```
阅读全文