yolov5学习率衰减之余弦退火
时间: 2023-10-04 07:08:13 浏览: 428
2_机器学习_学习率衰减_
Yolov5中使用余弦退火(Cosine Annealing)作为学习率衰减策略是一种常见的做法。余弦退火可以使模型在训练过程中逐渐降低学习率,从而更好地收敛到最优解。
具体实现步骤如下:
1. 首先,确定一个初始学习率(通常是比较大的值),以及总的训练迭代次数(epochs)。
2. 在每个迭代中,计算当前的训练迭代次数(current_epoch)。
3. 根据余弦函数计算一个介于0和1之间的衰减因子(decay_factor):
decay_factor = 0.5 * (1 + cos((current_epoch / epochs) * pi))
这里使用了余弦函数来控制衰减因子的变化。
4. 最后,将初始学习率乘以衰减因子,得到当前迭代的学习率。
通过这种方式,学习率会在训练过程中逐渐降低,并且在接近训练结束时趋近于零。这有助于模型在后期更细致地调整参数,提高性能。
需要注意的是,余弦退火只是一种学习率衰减策略之一,还有其他的方法可供选择,如学习率衰减表等。选择合适的学习率衰减策略需要根据具体问题和数据集进行调整和实验。
阅读全文