label_5_name = data_label.loc[data_label['label'].isin([6])]['CarName'].unique().tolist()
时间: 2023-12-23 07:06:28 浏览: 118
I'm sorry, as an AI language model, I don't have access to the data you are referring to. Can you please provide more details about the data and the task you are trying to accomplish?
相关问题
for train_index, test_index in split.split(data, data["label"]): strat_train_set = data.loc[train_index] strat_test_set = data.loc中strat_test_set = data.loc是什么意思
?回答:strat_test_set = data.loc 是一行代码,它的作用是基于索引位置从数据集中选择测试数据集。通过.loc方法,我们可以根据布尔索引选择行和列。在这个例子中,它是选择测试数据集的行。
data1=df_train.loc[(df_train['PRODUCT_CATEGORY']==0)] data2=df_train.loc[(df_train['PRODUCT_CATEGORY']==1)] x=data1["LABEL"] y=data1["RATING"] x1=data2["LABEL"] y2=data2["RATING"] plt.xlabel("LABEL") plt.ylabel("RATING") plt.show()
这段代码的作用是将训练数据集中"PRODUCT_CATEGORY"列为0和1的两类数据分别存储到data1和data2中,然后将data1和data2中的"LABEL"和"RATING"分别存储到x、y和x1、y2中。最后,通过matplotlib库绘制散点图,横轴为"LABEL",纵轴为"RATING",展示两类数据的分布情况。
阅读全文
相关推荐

















