已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。python
时间: 2024-05-11 12:17:34 浏览: 83
代码如下:
```
def josephus(n, m):
"""
约瑟夫环问题
n: 总人数
m: 报数的最大值
"""
if n < 1 or m < 1:
return []
# 初始化人员编号列表
nums = [i for i in range(n)]
# 计算开始报数的位置
index = 0
# 保存出列的人员编号
result = []
while len(nums) > 0:
# 计算报数位置
index = (index + m - 1) % len(nums)
# 保存出列的人员编号
result.append(nums.pop(index))
return result
```
这段代码实现了经典的约瑟夫环问题求解,使用了 Python 的列表和取模运算。可以通过调用该函数,传入总人数和最大报数值,得到每个人出列的顺序。
相关问题
已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。
### 回答1:
这是一个经典的约瑟夫问题。可以使用循环链表来模拟这个过程。具体实现可以参考以下步骤:
1. 创建一个循环链表,链表中每个节点表示一个人,节点的值为人的编号。
2. 从编号为0的人开始,依次报数,每次报数值加1,直到数到m的那个人出列。出列的方法是将该节点从链表中删除。
3. 接下来,从出列的人的下一个人开始,继续报数,每次报数值加1,直到数到m+1的那个人出列。同样地,将该节点从链表中删除。
4. 重复步骤2和3,直到链表中只剩下一个节点,即最后一个出列的人。
5. 输出最后一个出列的人的编号,即为约瑟夫问题的解。
需要注意的是,链表中节点的编号是从0开始的,而报数时的编号是从1开始的,需要进行转换。另外,由于每次删除节点会改变链表的长度,因此需要使用一个变量来记录当前链表的长度,以便正确地计算报数的位置。
### 回答2:
试考虑用数学方法解决此问题。
首先,我们可以将每个人的编号表示为 $0\sim n-1$ 中的一个整数。我们可以在每次报数中使用取模操作,使得编号在 $0\sim n-1$ 之间循环。例如,在编号为 $k$ 的人开始报数时,第一个数的编号就是 $(k+1)\bmod n$。
接下来考虑如何确定每一轮中被淘汰的人的编号。假设在第 $i$ 轮时,即报数值为 $i$ 时,编号为 $k$ 的人最先出列。则这意味着在之前的 $i-1$ 轮中,一共有 $k$ 个人被淘汰了。而在每一轮中,每个人有 $m$ 次报数机会,因此在 $i$ 轮中,一共进行了 $m \cdot n^{i-1}$ 次报数。由于编号为 $k$ 的人最先出列,因此在这些报数机会中,他被淘汰的次数加起来必须是 $i$。因此,我们需要找到满足条件 $k + i\times m \equiv 0\pmod n$ 的最小的非负整数 $k$。这可以通过求解同余方程来实现,即 $k\equiv -i\times m \pmod n$。
现在我们可以编写程序来按照上述规律模拟游戏的过程,直到所有人都被淘汰为止。在每一轮中,我们可以使用上述方法来确定出局者的编号,并将其从列表中删除。最后剩下的那个人就是胜利者。
### 回答3:
这是一道经典的约瑟夫问题,其本质是一个递归问题,可以使用递归解决。
首先,我们可以假设已经知道n-1个人时,最后留下的是第k个人。那么,在n个人时,第一轮出列的是第(m-1)%n个人,此时圆桌上剩下了(n-1)个人,假设最后留下的是第k个人。那么,在剩下的(n-1)个人里,第一个出列的应该是第m%n个人,即从第(m-1)%n+1个人算起,数m个人。此时圆桌上剩下了(n-2)个人,即问题变为在(n-1)个人中求解,此时最后留下的应该是第k个人。以此类推,直到剩下2个人,此时最后留下的是第(m-1)%2个人,即问题得到解决。
最后留下的人的编号是从0开始计数的,因此,需要将最后得到的解(k+m-1)%n映射为从0开始计数的解。
zzulioj又一个约瑟夫环约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为1的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到
### 回答1:
这是一道约瑟夫环问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围。从编号为1的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。求出列顺序(以编号形式表示)。
可以通过模拟这个过程的方式解决,首先我们创建一个长度为n的数组,表示圆桌上的人,初始化每个人的状态为存活状态(0表示存活,1表示死亡)。
然后从编号为1的人开始报数,这个人报数完毕后需要判断他是否应该出列。如果他应该出列,那么将他的状态修改为死亡状态,并将他的编号加入到结果数组中。否则,将他的编号加入到一个队列中,表示他还没有数到m的位置。接着,从队列中取出下一个编号,继续进行报数,重复这个过程直到所有人都出列为止。
最后返回结果数组即可。
### 回答2:
约瑟夫环是一个经典的数学问题,它可以让我们看到人在面对困难时的选择和决策能力。
问题是这样的:有n个人围成一个圆圈,从第一个人开始报数,报到第m个人出圈,并从下一个人开始报数,重复这个过程直到只剩下一个人,这个人就是胜利者。这个问题的解法是在1~n之间循环求解,每次删去第m个人,直到只剩下一个人。
对于这个问题,我们可以使用模拟法进行解决,即模拟这个过程,直到只剩下一个人为止。我们可以用数组将这n个人的编号储存起来,然后按照题意循环删除,每次循环判断是否到达数组末尾,如果到达末尾则回到数组头部继续删除,直到只剩下一个人为止。
除此之外,我们还可以使用递推公式进行解法。设f(n,m)表示n个人报数,每报到m就删除一个人最后剩下的人的编号。由于每一次都删除了一个人,所以到了n-1个人时,我们可以知道到底是哪一个人被删除掉了,即设编号为x。则我们可以将n个人的编号重新编号为1, 2, 3, ..., n-1,并且将x号的人作为编号为1的人重新开始报数,这样就可以得到n-1个人的解f(n-1, m)。然后我们可以将n个人的编号重新编号为2, 3, 4, ..., n,并将x号的人作为编号为2的人重新开始报数,得到一个新的问题的解f(n-1, m)。然后我们可以用递归来解决整个问题,即f(n, m) = (f(n-1, m) + m) % n。当n=1时,f(n, m)的值即为最后剩下的人的编号。
### 回答3:
m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。而zzulioj是一个在线测评平台,提供了关于约瑟夫环的一道编程题目。
对于这道题目,我们需要编写一个模拟算法来解决。首先,我们可以将所有的人按顺序排列起来,并通过数组保存每个人的编号。然后,我们从编号为1的人开始,按照题目规则不断地找到应该出列的人,并将其从列表中删除。直到所有人都被删除为止。
具体算法如下:
1. 初始化列表,将所有人的编号保存到一个数组中。
2. 从编号为1的人开始,按照题目规则不断地找到应该出列的人:将当前位置加上m,并对列表长度取模,即可找到应该出列的人。
3. 将出列的人从列表中删除。
4. 当列表中只剩一个人时,结束循环。
5. 输出最终剩下的那个人的编号。
通过这个算法,我们可以解决约瑟夫环问题,并且在zzulioj上进行测试。同时,这个算法也可以用来解决其他类似的问题,如“圆桌上20个人报数,报到13的人出圈……”等问题。
阅读全文