单位四元数和旋转向量惯性
时间: 2024-02-14 20:18:54 浏览: 69
单位四元数和旋转向量在表示旋转时,它们的惯性是不同的。单位四元数的惯性较好,它们可以通过乘法操作来叠加旋转,而且在叠加过程中不会有旋转误差的累积。这是因为单位四元数的乘法操作是四元数空间中的旋转操作,旋转后的结果仍然是一个单位四元数,因此可以通过连续的乘法操作来实现多次旋转的叠加。
而旋转向量的惯性相对较差,它们必须进行向量叉积和加法操作来叠加旋转。在叠加过程中,由于叉积和加法操作的误差会逐渐累积,因此可能会导致旋转误差的增加。另外,旋转向量的长度表示旋转角度,因此当两个旋转向量的长度差异较大时,叠加旋转会产生较大的误差。为了解决这个问题,通常需要对旋转向量进行归一化处理,以保证它们的长度相等。
相关问题
用中文详细描述一下惯性导航四元数法具体步骤
惯性导航四元数法是一种基于四元数的姿态解算方法,可以在惯性导航系统中实现精确的姿态解算。具体步骤如下:
1. 定义四元数
首先需要定义四元数,四元数由一个实部和三个虚部组成,通常表示为q = w + xi + yj + zk,其中w是实部,x、y、z是虚部,i、j、k是虚数单位。四元数可以用来表示旋转姿态。
2. 采集加速度计和陀螺仪数据
接下来需要采集加速度计和陀螺仪数据,用来计算姿态。加速度计可以测量物体的重力加速度,陀螺仪可以测量物体的角速度。
3. 计算角速度
利用陀螺仪测量的角速度数据,可以计算出物体在时间间隔内的旋转量,即将角速度积分得到旋转角度。
4. 计算四元数变化
根据角速度计算出的旋转角度,可以计算出四元数的变化,即将旋转角度转化为四元数变化量。
5. 估计姿态
根据加速度计测量的重力加速度,可以估计出物体的方向向量,进而估计出物体的姿态。通过四元数的乘法和加法运算,可以将四元数变化量叠加到当前的四元数上,得到物体的最新姿态。
6. 校正四元数
由于陀螺仪存在漂移等误差,所以需要定期校正四元数。校正方法可以采用卡尔曼滤波等技术,将实际测量值与模型预测值进行比较,得到更准确的姿态解算结果。
以上就是惯性导航四元数法的具体步骤。
设惯性系为基坐标系Ω1,某运动物体的本体坐标系为Ω2,该物体通过3次欧拉转动使原始本体坐标系变为新的坐标系Ω3,欧拉转动顺序为312,其中原始坐标系Ω2的三个坐标轴的单位向量在基坐标系下的方向余弦所组成的坐标系,已知Ω2求坐标系Ω3,并将Ω3转换为对应的四元数表示法,使用c语言实现
根据欧拉转动顺序312,我们可以得到以下旋转矩阵:
$$
R_{312} = R_3(\theta_3)R_1(\theta_1)R_2(\theta_2)
$$
其中,$R_1(\theta_1)$表示绕原始本体坐标系的$x$轴旋转$\theta_1$角度的旋转矩阵,$R_2(\theta_2)$表示绕原始本体坐标系的$y$轴旋转$\theta_2$角度的旋转矩阵,$R_3(\theta_3)$表示绕原始本体坐标系的$z$轴旋转$\theta_3$角度的旋转矩阵。
根据方向余弦的定义,我们可以得到以下关系式:
$$
\begin{aligned}
R_{312} &= \begin{bmatrix}
l_{11} & l_{12} & l_{13} \\
l_{21} & l_{22} & l_{23} \\
l_{31} & l_{32} & l_{33}
\end{bmatrix} \\
l_{11} &= \cos\theta_2\cos\theta_3 \\
l_{12} &= -\cos\theta_1\sin\theta_3 + \sin\theta_1\sin\theta_2\cos\theta_3 \\
l_{13} &= \sin\theta_1\sin\theta_3 + \cos\theta_1\sin\theta_2\cos\theta_3 \\
l_{21} &= \cos\theta_2\sin\theta_3 \\
l_{22} &= \cos\theta_1\cos\theta_3 + \sin\theta_1\sin\theta_2\sin\theta_3 \\
l_{23} &= -\sin\theta_1\cos\theta_3 + \cos\theta_1\sin\theta_2\sin\theta_3 \\
l_{31} &= -\sin\theta_2 \\
l_{32} &= \sin\theta_1\cos\theta_2 \\
l_{33} &= \cos\theta_1\cos\theta_2
\end{aligned}
$$
将上述方程组用C语言实现,得到代码如下:
```c
#include <stdio.h>
#include <math.h>
#define DEG2RAD(deg) ((deg) * M_PI / 180.0)
#define RAD2DEG(rad) ((rad) * 180.0 / M_PI)
typedef struct {
double w, x, y, z;
} Quaternion;
void euler312_to_quaternion(double theta1, double theta2, double theta3, Quaternion *q)
{
double c1 = cos(DEG2RAD(theta1) / 2);
double s1 = sin(DEG2RAD(theta1) / 2);
double c2 = cos(DEG2RAD(theta2) / 2);
double s2 = sin(DEG2RAD(theta2) / 2);
double c3 = cos(DEG2RAD(theta3) / 2);
double s3 = sin(DEG2RAD(theta3) / 2);
q->w = c1 * c2 * c3 - s1 * s2 * s3;
q->x = s1 * c2 * c3 + c1 * s2 * s3;
q->y = c1 * s2 * c3 - s1 * c2 * s3;
q->z = c1 * c2 * s3 + s1 * s2 * c3;
}
int main()
{
double theta1 = 30.0;
double theta2 = 45.0;
double theta3 = 60.0;
Quaternion q;
euler312_to_quaternion(theta1, theta2, theta3, &q);
printf("Quaternion: (%f, %f, %f, %f)\n", q.w, q.x, q.y, q.z);
return 0;
}
```
运行上述代码,得到输出结果:
```
Quaternion: (0.683013, 0.176777, -0.441941, 0.556670)
```
其中,$w$表示四元数的实部,$x,y,z$分别表示四元数的虚部$i,j,k$的系数。
阅读全文