用matlab编写程序求无约束优化问题minf(x)=3/2*x^2+1/2*y^2-x*y-2*x
时间: 2024-02-23 19:00:14 浏览: 92
好的,我来为您解答这个问题。这是一个二元函数的最小化问题,我们可以使用 Matlab 中的 fminunc 函数来求解。具体的代码如下:
```
% 定义目标函数
fun = @(x) 3/2*x(1)^2 + 1/2*x(2)^2 - x(1)*x(2) - 2*x(1);
% 设置初始点
x0 = [0, 0];
% 设置优化参数
options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton', 'MaxIter', 1000, 'MaxFunEvals', 10000);
% 调用 fminunc 函数求解
[x, fval, exitflag, output] = fminunc(fun, x0, options);
% 输出结果
fprintf('最小值为 %f,最优解为 (%f, %f)\n', fval, x(1), x(2));
```
在上面的代码中,我们首先定义了目标函数 `fun`,然后设置了初始点 `x0` 和优化参数 `options`。接着,我们调用了 `fminunc` 函数来求解最小值和最优解,最后输出结果。
请注意,这里我们使用了 `quasi-newton` 算法来进行优化,这是一种基于拟牛顿法的优化算法,具有较好的收敛性能。如果您想尝试其他的算法,可以在 `options` 中修改 `Algorithm` 的值。
相关问题
用matlab编写程序求约束优化问题minf(x)f=x^4-2*x^2*y+x^2+2*y^2-2*x*y+9/2*x-4*y+4,s.t. x1+x2=4
好的,这是一个带有线性约束的二元函数的最小化问题。我们可以使用 Matlab 中的 fmincon 函数来求解。具体的代码如下:
```
% 定义目标函数
fun = @(x) x(1)^4 - 2*x(1)^2*x(2) + x(1)^2 + 2*x(2)^2 - 2*x(1)*x(2) + 9/2*x(1) - 4*x(2) + 4;
% 定义线性约束
Aeq = [1, 1];
beq = 4;
% 设置初始点
x0 = [0, 0];
% 设置优化参数
options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point', 'MaxIter', 1000, 'MaxFunEvals', 10000);
% 调用 fmincon 函数求解
[x, fval, exitflag, output] = fmincon(fun, x0, [], [], Aeq, beq, [], [], [], options);
% 输出结果
fprintf('最小值为 %f,最优解为 (%f, %f)\n', fval, x(1), x(2));
```
在上面的代码中,我们首先定义了目标函数 `fun`,然后定义了线性约束 `Aeq` 和 `beq`,这里 `Aeq` 是一个 1x2 的矩阵,表示两个变量的系数之和为 1,`beq` 的值为 4,表示两个变量之和为 4。接着,我们设置了初始点 `x0` 和优化参数 `options`。最后,我们调用了 `fmincon` 函数来求解最小值和最优解,最后输出结果。
请注意,这里我们使用了 `interior-point` 算法来进行优化,这是一种基于内点法的优化算法,具有较好的收敛性能。如果您想尝试其他的算法,可以在 `options` 中修改 `Algorithm` 的值。
求约束优化问题:minf(x)=x^4-2*x^2*y+x^2+2*y^2-2*x*y+(9/2)*x-4*y+4;条件为x+y=4;用MATLAB可运行代码实现
下面是 MATLAB 可运行代码实现:
```matlab
syms x y lambda
f = x^4 - 2*x^2*y + x^2 + 2*y^2 - 2*x*y + (9/2)*x - 4*y + 4;
g = x + y - 4;
L = f + lambda*g;
grad = [diff(L, x); diff(L, y); diff(L, lambda)];
vars = [x, y, lambda];
eqns = [grad == 0, g == 0];
[xsol, ysol, lambdasol] = solve(eqns, vars);
minf = subs(f, [x, y], [xsol, ysol]);
minf = double(minf);
```
这里使用符号计算工具箱中的 `syms` 声明符号变量,然后定义目标函数 $f$ 和约束条件 $g$,构建拉格朗日函数 $L$,计算 $L$ 对 $x$、$y$、$\lambda$ 的导数,然后求解方程组得到最优解 $(x^*, y^*)$ 和 $\lambda^*$,最后计算目标函数在最优解处的取值。
阅读全文