class ChatBotGraph: def __init__(self): self.classifier = QuestionClassifier() self.parser = QuestionPaser() self.searcher = AnswerSearcher() def chat_main(self, sent): answer = "您好!我是民航知识助手小民,希望可以帮到您。如果没答上来,可联系我。祝您身体棒棒!" res_classify = self.classifier.classify(sent) print(res_classify) if not res_classify: results = searcher.find("question", sent) print(results) if results.__len__() > 0: for hit in results: return hit['answer'] else: return answer res_sql = self.parser.parser_main(res_classify) final_answers = self.searcher.search_main(res_sql, res_classify) if not final_answers: return answer else: return '\n'.join(final_answers)
时间: 2023-06-11 21:08:11 浏览: 143
这是一个基于问答系统的聊天机器人实现,主要分为三个部分:
1. QuestionClassifier:问题分类器,用于对用户输入的问题进行分类,判断其属于哪个领域或类型的问题,以便后续处理。
2. QuestionPaser:问题解析器,用于解析用户输入的问题,抽取出其中的关键信息,构成相应的 SQL 查询语句。
3. AnswerSearcher:答案检索器,根据解析出的 SQL 查询语句,在数据库中检索相关答案,并返回给用户。
在 chat_main() 函数中,首先使用 QuestionClassifier 对用户输入的问题进行分类,如果分类结果为空,则使用 AnswerSearcher 在数据库中查找相关答案。如果分类结果不为空,则使用 QuestionPaser 对问题进行解析,得到相应的 SQL 查询语句,并使用 AnswerSearcher 在数据库中查找相关答案。最终将检索到的答案返回给用户。如果没有检索到答案,则返回一个默认的问候语。
相关问题
import re import json from collections import defaultdict from question_classifier import * from question_parser import * from answer_search import * from tuomin_word import * '''问答类''' class ChatBotGraph: def __init__(self): self.classifier = QuestionClassifier() self.parser = QuestionPaser() self.searcher = AnswerSearcher() self.keyword_chains = {} self.delimit = '\x00' def chat_main(self, sent, name='珍一堂'): with open('con2.json', 'r') as f: config = json.load(f) # 根据参数获取配置文件中的值 if name in config: name_config = config[name] else: name_config = None answer = '您好,我是在线智能小助理,有什么需要帮助你的?若是没回答上来,请拨打人工电话:{}'.format(name_config) # (2023/7/10)新加入代码 ************************ gfw = DFAFilter() gfw.parse('./stop_word.txt') sent = gfw.filter(sent) print(sent) res_classify = self.classifier.classify(sent) if not res_classify: return answer res_sql = self.parser.parser_main(res_classify) final_answers = self.searcher.search_main(res_sql) if not final_answers: return answer else: return '\n'.join(final_answers) if __name__ == '__main__': path = './stop_word.txt' handler = ChatBotGraph() handler.parse(path) while 1: question = input('用户:') answer = handler.chat_main(question) print('助理小李:', answer) 能解释一下这个代码吗
这段代码是一个基于问答系统的聊天机器人的实现。让我来解释一下主要的部分:
1. 导入必要的库:代码开头导入了一些需要使用的库,如`re`(正则表达式操作)、`json`(处理 JSON 数据)、`defaultdict`(创建默认值字典)等。
2. 导入其他模块:代码中导入了其他几个模块,包括`question_classifier`、`question_parser`、`answer_search`和`tuomin_word`。这些模块包含了问答系统中的关键组件,用于问题分类、问题解析和答案搜索等。
3. 定义ChatBotGraph类:这是一个聊天机器人的主类,其中包含了初始化方法`__init__()`以及主要的聊天方法`chat_main()`。
4. 初始化方法:在初始化方法中,创建了问题分类器(`QuestionClassifier`)、问题解析器(`QuestionPaser`)、答案搜索器(`AnswerSearcher`)以及关键词链表(`keyword_chains`)等。
5. 聊天方法:`chat_main()`方法接收用户输入的问题作为参数,并返回机器人的回答。该方法首先根据配置文件和参数进行一些初始化设置,并返回一个初始的回答。然后,根据用户输入的问题进行关键词过滤,并进行问题分类和解析。最后,通过答案搜索器搜索答案,并将结果返回。
6. 主程序入口:最后的主程序入口部分,读取了停用词文件,创建了一个ChatBotGraph对象,并通过用户输入不断与机器人进行对话。
这段代码是一个简单的问答系统的示例,它通过问题分类、问题解析和答案搜索等组件来实现与用户的交互。你可以根据具体的需求和数据来进行修改和扩展。
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
阅读全文