十字链表储存稀疏矩阵及稀疏矩阵相乘 C代码

时间: 2023-09-11 09:05:38 浏览: 121
下面是用十字链表储存稀疏矩阵和实现稀疏矩阵相乘的 C 代码示例: ```c #include <stdio.h> #include <stdlib.h> // 定义十字链表节点 typedef struct { int row; // 行下标 int col; // 列下标 int value; // 元素值 struct Node* right; // 指向右边的节点 struct Node* down; // 指向下方的节点 } Node; // 定义十字链表 typedef struct { int rows; // 矩阵的行数 int cols; // 矩阵的列数 Node* row_heads; // 行头节点数组 Node* col_heads; // 列头节点数组 } CrossList; // 创建稀疏矩阵对应的十字链表 CrossList* createCrossList(int rows, int cols) { CrossList* matrix = (CrossList*)malloc(sizeof(CrossList)); matrix->rows = rows; matrix->cols = cols; matrix->row_heads = (Node*)malloc(rows * sizeof(Node)); matrix->col_heads = (Node*)malloc(cols * sizeof(Node)); // 初始化头节点数组 for (int i = 0; i < rows; i++) { matrix->row_heads[i].right = NULL; matrix->row_heads[i].down = NULL; } for (int j = 0; j < cols; j++) { matrix->col_heads[j].right = NULL; matrix->col_heads[j].down = NULL; } return matrix; } // 向十字链表中插入元素 void insertElement(CrossList* matrix, int row, int col, int value) { Node* newNode = (Node*)malloc(sizeof(Node)); newNode->row = row; newNode->col = col; newNode->value = value; // 插入新节点到行链表中 Node* row_head = &(matrix->row_heads[row]); Node* cur = row_head; while (cur->right != NULL && cur->right->col < col) { cur = cur->right; } newNode->right = cur->right; cur->right = newNode; // 插入新节点到列链表中 Node* col_head = &(matrix->col_heads[col]); cur = col_head; while (cur->down != NULL && cur->down->row < row) { cur = cur->down; } newNode->down = cur->down; cur->down = newNode; } // 打印稀疏矩阵的十字链表表示 void printCrossList(CrossList* matrix) { for (int i = 0; i < matrix->rows; i++) { Node* node = matrix->row_heads[i].right; for (int j = 0; j < matrix->cols; j++) { if (node != NULL && node->col == j) { printf("%d ", node->value); node = node->right; } else { printf("0 "); } } printf("\n"); } } // 稀疏矩阵相乘 CrossList* multiplySparseMatrix(CrossList* matrix1, CrossList* matrix2) { if (matrix1->cols != matrix2->rows) { printf("Cannot multiply the matrices!"); return NULL; } CrossList* result = createCrossList(matrix1->rows, matrix2->cols); for (int i = 0; i < matrix1->rows; i++) { Node* row_head = &(matrix1->row_heads[i]); Node* node1 = row_head->right; for (int j = 0; j < matrix2->cols; j++) { Node* col_head = &(matrix2->col_heads[j]); Node* node2 = col_head->down; int value = 0; while (node1 != NULL && node2 != NULL) { if (node1->col < node2->row) { node1 = node1->right; } else if (node1->col > node2->row) { node2 = node2->down; } else { value += node1->value * node2->value; node1 = node1->right; node2 = node2->down; } } if (value != 0) { insertElement(result, i, j, value); } } } return result; } // 测试代码 int main() { CrossList* matrix1 = createCrossList(3, 3); insertElement(matrix1, 0, 0, 1); insertElement(matrix1, 0, 2, 2); insertElement(matrix1, 1, 1, 3); insertElement(matrix1, 2, 0, 4); insertElement(matrix1, 2, 2, 5); CrossList* matrix2 = createCrossList(3, 3); insertElement(matrix2, 0, 0, 1); insertElement(matrix2, 0, 1, 2); insertElement(matrix2, 1, 1, 3); insertElement(matrix2, 1, 2, 4); insertElement(matrix2, 2, 0, 5); CrossList* result = multiplySparseMatrix(matrix1, matrix2); printf("Result:\n"); printCrossList(result); return 0; } ``` 这段代码实现了稀疏矩阵的十字链表存储以及稀疏矩阵的乘法操作。你可以根据需要修改矩阵的大小和元素值进行测试。
阅读全文

相关推荐

最新推荐

recommend-type

基于十字链表存储的稀疏矩阵的转置

总结来说,这个C++程序展示了如何利用十字链表有效地处理稀疏矩阵的转置问题,通过文件读写操作实现了数据的输入和输出,同时保持了数据结构的高效性和可读性。这种实现方法对于处理大型稀疏矩阵尤其有价值,因为它...
recommend-type

稀疏矩阵运算器(数据结构)

程序的物理结构包括三元组的顺序表存储、带链接信息的三元组对象以及十字链表对象,它们分别用来存储和操作稀疏矩阵。 3. **数据结构**:稀疏矩阵通常使用三元组数组或者十字链表进行存储。例如,`TSMatrix`结构体...
recommend-type

十字链表创建的实验报告

在稀疏矩阵的存储中,十字链表将非零元素作为链表的节点,每个节点包含5个域:3个数据域存储元素的行号、列号和元素值,另外2个指针域分别指向下一个同列的节点(向右的指针right)和下一个同行的节点(向下的指针...
recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依