kernel t-SNE算法和t-SNE算法之间的区别
时间: 2023-12-14 08:30:20 浏览: 97
《统计学习方法》笔记-基于Python算法实现.zip
t-SNE(t-Distributed Stochastic Neighbor Embedding)算法是一种常用的降维算法,用于将高维数据映射到二维或三维空间中进行可视化。kernel t-SNE算法是在t-SNE算法的基础上,引入核函数的思想,用于处理非线性数据。
t-SNE算法是基于概率分布的降维算法,通过计算原始高维空间中数据点之间的相似度矩阵和低维空间中数据点之间的相似度矩阵,从而最小化两个相似度矩阵之间的KL散度,得到最终的降维结果。而kernel t-SNE算法则是在计算相似度矩阵时,采用了核函数来处理非线性数据,从而可以更准确地保留数据的局部结构和全局结构。
总之,kernel t-SNE算法是在t-SNE算法的基础上引入核函数的思想,用于处理非线性数据,从而可以更好地进行降维和可视化。
阅读全文