module hc_sr_echo( input wire Clk , //clock 50MHz input wire clk_us , //system clock 1MHz input wire Rst_n , //reset ,low valid input wire echo , // output wire [18:00] data_o //检测距离,保留3位小数,*1000实现 ); /* S(um) = 17 * t --> x.abc cm */ //Parameter Declarations parameter T_MAX = 16'd60_000;//510cm 对应计数值 //Interrnal wire/reg declarations reg r1_echo,r2_echo; //边沿检测 wire echo_pos,echo_neg; // reg [15:00] cnt ; //Counter wire add_cnt ; //Counter Enable wire end_cnt ; //Counter Reset reg [18:00] data_r ; //Logic Description //如果使用clk_us 检测边沿,延时2us,差值过大 always @(posedge Clk or negedge Rst_n)begin if(!Rst_n)begin r1_echo <= 1'b0; r2_echo <= 1'b0; end else begin r1_echo <= echo; r2_echo <= r1_echo; end end assign echo_pos = r1_echo & ~r2_echo; assign echo_neg = ~r1_echo & r2_echo; always @(posedge clk_us or negedge Rst_n)begin if(!Rst_n)begin cnt <= 'd0; end else if(add_cnt)begin if(end_cnt)begin cnt <= cnt; end else begin cnt <= cnt + 1'b1; end end else begin //echo 低电平 归零 cnt <= 'd0; end end assign add_cnt = echo; assign end_cnt = add_cnt && cnt >= T_MAX - 1; //超出最大测量范围则保持不变,极限 always @(posedge Clk or negedge Rst_n)begin if(!Rst_n)begin data_r <= 'd2; end else if(echo_neg)begin data_r <= (cnt << 4) + cnt; end else begin data_r <= data_r; end end //always end assign data_o = data_r >> 1; endmodule

时间: 2024-03-19 07:41:10 浏览: 9
这是一个 Verilog HDL 的模块,名称为 hc_sr_echo,用于实现 HC-SR04 超声波测距模块的驱动。它有以下输入输出端口: 输入端口: - Clk:时钟信号,频率为 50MHz。 - clk_us:系统时钟信号,频率为 1MHz。 - Rst_n:异步复位信号,低电平有效。 - echo:超声波接收信号,高电平表示接收到超声波信号。 输出端口: - data_o:测量到的距离数据,保留 3 位小数,单位为毫米。 该模块通过计数来测量超声波信号的传播时间,从而得到距离数据。具体实现过程为: 1. 在时钟上升沿或复位信号下降沿时,记录上一次的 echo 信号和当前的 echo 信号,得到 echo_pos 和 echo_neg 信号,用于检测超声波信号的上升沿和下降沿。 2. 在系统时钟上升沿或复位信号下降沿时,根据 echo_pos 和 echo_neg 信号,通过计数器 cnt 记录超声波信号的传播时间,并判断是否超出最大测量范围(510cm)。 3. 在时钟上升沿或复位信号下降沿时,根据 echo_neg 信号和计数器 cnt 的值,计算出测量到的距离数据,输出到 data_o 端口。
相关问题

module e_and_t( input wire Clk , //system clock 100MHz input wire Rst_n , //reset ,low valid input wire echo , // output wire trig , //触发测距信号 output wire [9:00] data_o //检测距离,保留3整数,单位:cm ); //Interrnal wire/reg declarations wire clk_us; // //Module instantiations , self-build module clk_div clk_div( /*input wire */.Clk (Clk ), //system clock 100MHz /*input wire */.Rst_n (Rst_n ), //reset ,low valid /*output wire */.clk_us (clk_us ) // ); hc_sr_trig hc_sr_trig( /*input wire */.clk_us (clk_us ), //system clock 1MHz /*input wire */.Rst_n (Rst_n ), //reset ,low valid /*output wire */.trig (trig ) //触发测距信号 ); hc_sr_echo hc_sr_echo( /*input wire */.Clk (Clk ), //clock 100MHz /*input wire */.clk_us (clk_us ), //system clock 1MHz /*input wire */.Rst_n (Rst_n ), //reset ,low valid /*input wire */.echo (echo ), // /*output reg [9:00]*/.data_o (data_o ) //检测距离,保留3位整数,*1000实现 ); //Logic Description endmodule

这段代码是一个 Verilog HDL 的模块 e_and_t,它实现了 HC-SR04 超声波测距模块的驱动。模块有四个输入信号:系统时钟 Clk,复位信号 Rst_n,回声信号 echo,以及一个输出信号 trig,它的作用是触发 HC-SR04 开始测距。此外,模块还有一个 10 位的输出信号 data_o,它是通过 HC-SR04 返回的脉冲宽度计算得到的距离值,单位为 cm,保留了 3 位整数部分。模块内部实例化了两个自定义模块 clk_div 和 hc_sr_trig,它们的作用是将系统时钟 Clk 分频到 1 MHz,并生成 HC-SR04 的触发信号 trig。另外,模块还实例化了一个自定义模块 hc_sr_echo,它通过回声信号 echo 和分频后的时钟 clk_us 计算 HC-SR04 返回的脉冲宽度,并将距离值输出到 data_o。

module hc_sr_echo( input wire Clk , //clock 50MHz input wire clk_us , //system clock 1MHz input wire Rst_n , //reset ,low valid input wire echo , // output wire [18:00] data_o //检测距离,保留3位小数,*1000实现 ); /* S(um) = 17 * t --> x.abc cm */ //Parameter Declarations parameter T_MAX = 16'd60_000;//510cm 对应计数值 //Interrnal wire/reg declarations reg r1_echo,r2_echo; //边沿检测 wire echo_pos,echo_neg; // reg [15:00] cnt ; //Counter wire add_cnt ; //Counter Enable wire end_cnt ; //Counter Reset reg [18:00] data_r ; //Logic Description //如果使用clk_us 检测边沿,延时2us,差值过大 always @(posedge Clk or negedge Rst_n)begin if(!Rst_n)begin r1_echo <= 1'b0; r2_echo <= 1'b0; end else begin r1_echo <= echo; r2_echo <= r1_echo; end end assign echo_pos = r1_echo & ~r2_echo; assign echo_neg = ~r1_echo & r2_echo; always @(posedge clk_us or negedge Rst_n)begin if(!Rst_n)begin cnt <= 'd0; end else if(add_cnt)begin if(end_cnt)begin cnt <= cnt; end else begin cnt <= cnt + 1'b1; end end else begin //echo 低电平 归零 cnt <= 'd0; end end assign add_cnt = echo; assign end_cnt = add_cnt && cnt >= T_MAX - 1; //超出最大测量范围则保持不变,极限 always @(posedge Clk or negedge Rst_n)begin if(!Rst_n)begin data_r <= 'd2; end else if(echo_neg)begin data_r <= (cnt << 4) + cnt; end else begin data_r <= data_r; end end //always end assign data_o = data_r >> 1; endmodule请详细解释这段代码

这段代码是一个 Verilog HDL 的模块,用于实现超声波测距模块 HC-SR04 的回波信号处理。以下是代码的详细解释: 1. 模块输入输出说明 ```Verilog module hc_sr_echo( input wire Clk, // 时钟信号,50MHz input wire clk_us, // 系统时钟,1MHz input wire Rst_n, // 复位信号,低电平有效 input wire echo, // 超声波回波信号 output wire [18:0] data_o // 检测距离,保留3位小数,*1000实现 ); ``` 2. 模块内部参数定义 ```Verilog parameter T_MAX = 16'd60_000; // 510cm 对应计数值 ``` T_MAX 定义了最大计数值,即最大测量距离为 510cm。 3. 模块内部信号定义 ```Verilog reg r1_echo, r2_echo; // 边沿检测 wire echo_pos, echo_neg; // reg [15:0] cnt; // 计数器 wire add_cnt; // 计数器使能 wire end_cnt; // 计数器复位 reg [18:0] data_r; // 逻辑输出 ``` 其中,r1_echo 和 r2_echo 用于检测超声波回波信号的上升沿和下降沿;cnt 是计数器;add_cnt 和 end_cnt 控制计数器的启动和复位;data_r 是输出的距离测量值。 4. 边沿检测 ```Verilog always @(posedge Clk or negedge Rst_n) begin if (!Rst_n) begin r1_echo <= 1'b0; r2_echo <= 1'b0; end else begin r1_echo <= echo; r2_echo <= r1_echo; end end ``` 这段代码使用了 always 块和 if 语句,实现了超声波回波信号的边沿检测,即检测上升沿和下降沿。 5. 计数器 ```Verilog always @(posedge clk_us or negedge Rst_n) begin if (!Rst_n) begin cnt <= 'd0; end else if (add_cnt) begin if (end_cnt) begin cnt <= cnt; end else begin cnt <= cnt + 1'b1; end end else begin cnt <= 'd0; end end ``` 这段代码使用了 always 块和 if 语句,实现了计数器的功能。当 add_cnt 为 1 时,计数器开始计数,直到 cnt 达到 T_MAX - 1 或 end_cnt 为 1,计数器复位为 0。 6. 距离测量 ```Verilog always @(posedge Clk or negedge Rst_n)begin if (!Rst_n) begin data_r <= 'd2; end else if (echo_neg) begin data_r <= (cnt << 4) + cnt; end else begin data_r <= data_r; end end ``` 这段代码使用了 always 块和 if 语句,根据计数器的值计算出距离测量值并输出到 data_r。 7. 输出信号 ```Verilog assign data_o = data_r >> 1; ``` 这段代码使用了 assign 语句,将 data_r 的值右移 1 位后输出到 data_o,得到最终的距离测量值,单位为毫米。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩