if mode == 'train': self.img_sq = imgs[:train_frames]中的img_sq是什么意思

时间: 2024-03-30 09:34:24 浏览: 63
在这个代码段中,img_sq代表一个变量或属性,用于存储处理后的图像数据。根据代码上下文,我猜测imgs是一个图像序列或图像列表,train_frames是训练帧的数量。所以,在这个if语句块中,imgs列表中的前train_frames帧被用于训练,并且将这些训练帧存储在img_sq变量中以备后续使用。
相关问题

def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])

这段代码的作用是在多个进程之间进行同步。 首先,它使用一个循环遍历 `self.iou_types` 列表中的每个元素 `iou_type`。在每次迭代中,它执行两个操作。 第一个操作是将列表 `self.eval_imgs[iou_type]` 中的元素进行拼接,拼接的维度为 2。也就是说,`self.eval_imgs[iou_type]` 是一个包含多个数组的列表,通过 `np.concatenate()` 函数将这些数组在第三个维度上进行拼接。拼接后的结果存储回 `self.eval_imgs[iou_type]` 中。 第二个操作是调用 `create_common_coco_eval()` 函数,传入 `self.coco_eval[iou_type]`、`self.img_ids` 和 `self.eval_imgs[iou_type]` 作为参数。这个函数的具体功能没有在给出的代码中展示,但根据函数名和参数可以猜测它可能用于创建一个与 COCO 数据集评估相关的对象。 综合起来,这段代码通过循环遍历 `self.iou_types` 中的元素,在每次迭代中将 `self.eval_imgs[iou_type]` 列表中的数组进行拼接,并调用一个名为 `create_common_coco_eval()` 的函数。这些操作可能用于在多个进程之间共享和处理一些评估结果数据。

解释 if cache_images: # if training gb = 0 # Gigabytes of cached images 用于记录缓存图像占用RAM大小 if rank in [-1, 0]: pbar = tqdm(range(len(self.img_files)), desc="Caching images") else: pbar = range(len(self.img_files)) self.img_hw0, self.img_hw = [None] * n, [None] * n for i in pbar: # max 10k images self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized gb += self.imgs[i].nbytes # 用于记录缓存图像占用RAM大小 if rank in [-1, 0]: pbar.desc = "Caching images (%.1fGB)" % (gb / 1E9)

这段代码用于缓存图像,以便于训练时能够更快地加载数据。如果 `cache_images` 参数为真,则会遍历所有的图像文件,使用 `load_image` 方法将每张图像加载到内存中。在加载图像的同时,会记录图像的原始大小和缩放后的大小。这里会使用 `tqdm` 库来显示进度条,以便于用户可以了解图像加载的进度。在加载每张图像时,会累加上该图像占用的内存大小。最终,会在进度条上显示已经缓存的图像占用了多少内存。需要注意的是,这段代码在训练时才会被执行,因为只有在训练时才需要缓存图像。
阅读全文

相关推荐

将下面代码使用ConvRNN2D层来替换ConvLSTM2D层,并在模块__init__.py中创建类‘convrnn’ class Model(): def __init__(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= tf.keras.layers.ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out)

# 定义数据集读取器 def load_data(mode='train'): # 数据文件 datafile = './data/data116648/mnist.json.gz' print('loading mnist dataset from {} ......'.format(datafile)) data = json.load(gzip.open(datafile)) train_set, val_set, eval_set = data # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS IMG_ROWS = 28 IMG_COLS = 28 if mode == 'train': imgs = train_set[0] labels = train_set[1] elif mode == 'valid': imgs = val_set[0] labels = val_set[1] elif mode == 'eval': imgs = eval_set[0] labels = eval_set[1] imgs_length = len(imgs) assert len(imgs) == len(labels), \ "length of train_imgs({}) should be the same as train_labels({})".format( len(imgs), len(labels)) index_list = list(range(imgs_length)) # 读入数据时用到的batchsize BATCHSIZE = 100 # 定义数据生成器 def data_generator(): if mode == 'train': random.shuffle(index_list) imgs_list = [] labels_list = [] for i in index_list: img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32') img_trans=-img #转变颜色 label = np.reshape(labels[i], [1]).astype('int64') label_trans=label imgs_list.append(img) imgs_list.append(img_trans) labels_list.append(label) labels_list.append(label_trans) if len(imgs_list) == BATCHSIZE: yield np.array(imgs_list), np.array(labels_list) imgs_list = [] labels_list = [] # 如果剩余数据的数目小于BATCHSIZE, # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch if len(imgs_list) > 0: yield np.array(imgs_list), np.array(labels_list) return data_generator

下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)

from pdb import set_trace as st import os import numpy as np import cv2 import argparse parser = argparse.ArgumentParser('create image pairs') parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges') parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg') parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB') parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000) parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true') args = parser.parse_args() for arg in vars(args): print('[%s] = ' % arg, getattr(args, arg)) splits = os.listdir(args.fold_A) for sp in splits: img_fold_A = os.path.join(args.fold_A, sp) img_fold_B = os.path.join(args.fold_B, sp) img_list = os.listdir(img_fold_A) if args.use_AB: img_list = [img_path for img_path in img_list if '_A.' in img_path] num_imgs = min(args.num_imgs, len(img_list)) print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) img_fold_AB = os.path.join(args.fold_AB, sp) if not os.path.isdir(img_fold_AB): os.makedirs(img_fold_AB) print('split = %s, number of images = %d' % (sp, num_imgs)) for n in range(num_imgs): name_A = img_list[n] path_A = os.path.join(img_fold_A, name_A) if args.use_AB: name_B = name_A.replace('_A.', '_B.') else: name_B = name_A path_B = os.path.join(img_fold_B, name_B) if os.path.isfile(path_A) and os.path.isfile(path_B): name_AB = name_A if args.use_AB: name_AB = name_AB.replace('_A.', '.') # remove _A path_AB = os.path.join(img_fold_AB, name_AB) im_A = cv2.imread(path_A, cv2.IMREAD_COLOR) im_B = cv2.imread(path_B, cv2.IMREAD_COLOR) im_AB = np.concatenate([im_A, im_B], 1) cv2.imwrite(path_AB, im_AB),解释上述代码,并告诉我怎么设置文件夹格式

from pdb import set_trace as st import os import numpy as np import cv2 import argparse parser = argparse.ArgumentParser('create image pairs') parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='./dataset/blurred') parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='./dataset/sharp') parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/out') parser.add_argument('--num_imgs', dest='num_imgs', help='number of images',type=int, default=1000000) parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)',action='store_true') args = parser.parse_args() for arg in vars(args): print('[%s] = ' % arg, getattr(args, arg)) splits = os.listdir(args.fold_A) for sp in splits: img_fold_A = os.path.join(args.fold_A, sp) img_fold_B = os.path.join(args.fold_B, sp) img_list = os.listdir(img_fold_A) if args.use_AB: img_list = [img_path for img_path in img_list if '_A.' in img_path] num_imgs = min(args.num_imgs, len(img_list)) print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) img_fold_AB = os.path.join(args.fold_AB, sp) if not os.path.isdir(img_fold_AB): os.makedirs(img_fold_AB) print('split = %s, number of images = %d' % (sp, num_imgs)) for n in range(num_imgs): name_A = img_list[n] path_A = os.path.join(img_fold_A, name_A) if args.use_AB: name_B = name_A.replace('_A.', '_B.') else: name_B = name_A path_B = os.path.join(img_fold_B, name_B) if os.path.isfile(path_A) and os.path.isfile(path_B): name_AB = name_A if args.use_AB: name_AB = name_AB.replace('_A.', '.') # remove _A path_AB = os.path.join(img_fold_AB, name_AB) im_A = cv2.imread(path_A, cv2.IMREAD_COLOR) im_B = cv2.imread(path_B, cv2.IMREAD_COLOR) im_AB = np.concatenate([im_A, im_B], 1) cv2.imwrite(path_AB, im_AB),运行上述代码,提示错误:NotADirectoryError: [WinError 267] 目录名称无效。: 'D:\Users\Administrator\PycharmProjects\pythonProject\DeblurGAN-master\datasets\blurred\1.jpg'

将下面代码简洁化:def split_dataset(img_path, target_folder_path, output_path): filename = [] total_imgs = os.listdir(img_path) #for root, dirs, files in os.walk(img_path): for img in total_imgs: filename.append(img) np.random.shuffle(filename) train = filename[:int(len(filename) * 0.9)] test = filename[int(len(filename) * 0.9):] out_images = os.path.join(output_path, 'imgs') if not os.path.exists(out_images): os.makedirs(out_images) out_images_train = os.path.join(out_images, 'training') if not os.path.exists(out_images_train): os.makedirs(out_images_train) out_images_test = os.path.join(out_images, 'test') if not os.path.exists(out_images_test): os.makedirs(out_images_test) out_annotations = os.path.join(output_path, 'annotations') if not os.path.exists(out_annotations): os.makedirs(out_annotations) out_annotations_train = os.path.join(out_annotations, 'training') if not os.path.exists(out_annotations_train): os.makedirs(out_annotations_train) out_annotations_test = os.path.join(out_annotations, 'test') if not os.path.exists(out_annotations_test): os.makedirs(out_annotations_test) for i in train: print(os.path.join(img_path, i)) print(os.path.join(out_images_train, i)) shutil.copyfile(os.path.join(img_path, i), os.path.join(out_images_train, i)) annotations_name = "gt_" + i[:-3] + 'txt' shutil.copyfile(os.path.join(target_folder_path, annotations_name), os.path.join(out_annotations_train, annotations_name)) for i in test: shutil.copyfile(os.path.join(img_path, i), os.path.join(out_images_test, i)) annotations_name = "gt_" + i[:-3] + 'txt' shutil.copyfile(os.path.join(target_folder_path, annotations_name), os.path.join(out_annotations_test, annotations_name))

解释代码:def main(args): obj_names = np.loadtxt(args.obj_file, dtype=str) N_map = np.load(args.N_map_file) mask = cv2.imread(args.mask_file, 0) N = N_map[mask > 0] L = np.loadtxt(args.L_file) if args.stokes_file is None: stokes = np.tile(np.array([[1, 0, 0, 0]]), (len(L), 1)) else: stokes = np.loadtxt(args.stokes_file) v = np.array([0., 0., 1.], dtype=float) H = (L + v) / np.linalg.norm(L + v, axis=1, keepdims=True) theta_d = np.arccos(np.sum(L * H, axis=1)) norm = np.linalg.norm(L - H, axis=1, keepdims=True) norm[norm == 0] = 1 Q = (L - H) / norm for i_obj, obj_name in enumerate(obj_names[args.obj_range[0]:args.obj_range[1]]): print('===== {} - {} start ====='.format(i_obj, obj_name)) obj_name = str(obj_name) pbrdf = PBRDF(os.path.join(args.pbrdf_dir, obj_name + 'matlab', obj_name + 'pbrdf.mat')) ret = Parallel(n_jobs=args.n_jobs, verbose=5, prefer='threads')([delayed(render)(i, pbrdf, n, L, stokes, H, theta_d, Q) for i, n in enumerate(N)]) ret.sort(key=lambda x: x[0]) M = np.array([x[1] for x in ret], dtype=float) if args.save_type != 'raw': M = M / M.max() pimgs = np.zeros((len(L), 4) + N_map.shape) pimgs[:, :, mask > 0] = M.transpose(2, 1, 0, 3) out_path = os.path.join(args.out_dir, obj_name) makedirs(out_path) print('Saving images...') fnames = [] for i, imgs in enumerate(tqdm(pimgs)): if args.save_type == 'npy' or args.save_type == 'raw': for img, pangle in zip(imgs, pangles): fname = '{:03d}{:03d}.npy'.format(i + 1, pangle) fnames.append(fname) np.save(os.path.join(out_path, fname), img) elif args.save_type == 'png': for img, pangle in zip(imgs, pangles): fname = '{:03d}{:03d}.png'.format(i + 1, pangle) fnames.append(fname) img = img * np.iinfo(np.uint16).max img = img[..., ::-1] cv2.imwrite(os.path.join(out_path, fname), img.astype(np.uint16)) np.save(os.path.join(out_path, 'normal_gt.npy'), N_map) shutil.copyfile(args.mask_file, os.path.join(out_path, 'mask.png')) shutil.copyfile(args.L_file, os.path.join(out_path, 'light_directions.txt')) print('===== {} - {} done ====='.format(i_obj, obj_name))

大家在看

recommend-type

RK eMMC Support List

RK eMMC Support List
recommend-type

UD18415B_海康威视信息发布终端_快速入门指南_V1.1_20200302.pdf

仅供学习方便使用,海康威视信息发布盒配置教程
recommend-type

qt mpi程序设计

qt中使用mpi进行程序设计,以pi的计算来讲解如何使用mpi进行并行程序开发
recommend-type

考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年

408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业408历年算题大全(2009~2023年) 考研计算机408历年真题及答案pdf汇总来了 计算机考研 计算机408考研 计算机历年真题+解析09-23年 408计算机学科专业基础综合考研历年真题试卷与参考答案 真的很全!2009-2023计算机408历年真题及答案解析汇总(pdf 2009-2023计算机考研408历年真题pdf电子版及解析 2023考研408计算机真题全解 专业4
recommend-type

应用手册 - SoftMove.pdf

ABB机器人的SoftMove手册,本手册是中文版,中文版,中文版,重要的事情说三遍,ABB原版手册是英文的,而这个手册是中文的。

最新推荐

recommend-type

基于STM32单片机的激光雕刻机控制系统设计-含详细步骤和代码

内容概要:本文详细介绍了基于STM32单片机的激光雕刻机控制系统的设计。系统包括硬件设计、软件设计和机械结构设计,主要功能有可调节激光功率大小、改变雕刻速率、手动定位、精确雕刻及切割。硬件部分包括STM32最小系统、步进电机驱动模块、激光发生器控制电路、人机交互电路和串口通信电路。软件部分涉及STM32CubeMX配置、G代码解析、步进电机控制、激光功率调节和手动定位功能的实现。 适合人群:对嵌入式系统和激光雕刻机感兴趣的工程师和技术人员。 使用场景及目标:① 适用于需要高精度激光雕刻的应用场合;② 为开发类似的激光雕刻控制系统提供设计参考。 阅读建议:本文提供了详细的硬件和软件设计方案,读者应结合实际应用场景进行理解,重点关注电路设计和代码实现。
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.
recommend-type

掌握Dash-Website构建Python数据可视化网站

资源摘要信息:"Dash-Website" 1. Python编程语言 Python是一种广泛使用的高级编程语言,以其简洁明了的语法和强大的功能而受到开发者的青睐。Python支持多种编程范式,包括面向对象、命令式、函数式和过程式编程。它的设计哲学强调代码的可读性和简洁的语法(尤其是使用空格缩进来区分代码块,而不是使用大括号或关键字)。Python解释器和广泛的库支持使其可以广泛应用于Web开发、数据分析、人工智能、科学计算以及更多领域。 2. Dash框架 Dash是一个开源的Python框架,用于构建交互式的Web应用程序。Dash是专门为数据分析和数据科学团队设计的,它允许用户无需编写JavaScript、HTML和CSS就能创建功能丰富的Web应用。Dash应用由纯Python编写,这意味着数据科学家和分析师可以使用他们的数据分析技能,直接在Web环境中创建数据仪表板和交互式可视化。 3. Dash-Website 在给定的文件信息中,"Dash-Website" 可能指的是一个使用Dash框架创建的网站。Dash网站可能是一个用于展示数据、分析结果或者其他类型信息的Web平台。这个网站可能会使用Dash提供的组件,比如图表、滑块、输入框等,来实现复杂的用户交互。 4. Dash-Website-master 文件名称中的"Dash-Website-master"暗示这是一个版本控制仓库的主分支。在版本控制系统中,如Git,"master"分支通常是项目的默认分支,包含了最稳定的代码。这表明提供的压缩包子文件中包含了构建和维护Dash-Website所需的所有源代码文件、资源文件、配置文件和依赖声明文件。 5. GitHub和版本控制 虽然文件信息中没有明确指出,但通常在描述一个项目(例如网站)时,所提及的"压缩包子文件"很可能是源代码的压缩包,而且可能是从版本控制系统(如GitHub)中获取的。GitHub是一个基于Git的在线代码托管平台,它允许开发者存储和管理代码,并跟踪代码的变更历史。在GitHub上,一个项目被称为“仓库”(repository),开发者可以创建分支(branch)来独立开发新功能或进行实验,而"master"分支通常用作项目的主分支。 6. Dash的交互组件 Dash框架提供了一系列的交互式组件,允许用户通过Web界面与数据进行交互。这些组件包括但不限于: - 输入组件,如文本框、滑块、下拉菜单和复选框。 - 图形组件,用于展示数据的图表和可视化。 - 输出组件,如文本显示、下载链接和图像显示。 - 布局组件,如行和列布局,以及HTML组件,如按钮和标签。 7. Dash的部署 创建完Dash应用后,需要将其部署到服务器上以供公众访问。Dash支持多种部署方式,包括通过Heroku、AWS、Google Cloud Platform和其他云服务。部署过程涉及到设置Web服务器、配置数据库(如果需要)以及确保应用运行环境稳定。Dash文档提供了详细的部署指南,帮助开发者将他们的应用上线。 8. 项目维护和贡献 项目如Dash-Website通常需要持续的维护和更新。开发者可能需要添加新功能、修复bug和优化性能。此外,开源项目也鼓励社区成员为其贡献代码或文档。GitHub平台为项目维护者和贡献者提供了一套工具,如Pull Requests、Issues、Wiki和讨论区,以便更高效地协作和沟通。 总结而言,从给定的文件信息来看,“Dash-Website”很可能是一个利用Python语言和Dash框架构建的交互式数据可视化网站,其源代码可能托管在GitHub上,并且有一个名为“Dash-Website-master”的主分支。该网站可能具有丰富的交互组件,支持数据展示和用户互动,并且可以通过各种方式部署到Web服务器上。此外,作为一个开源项目,它可能还涉及到社区维护和协作开发的过程。