用破圈法求一个带权连通图的最小生成树

时间: 2024-06-24 11:01:07 浏览: 22
破圈法,也称为Prim算法或Prim-Jarník算法,是一种用于计算带权无向图中最小生成树的贪心算法。最小生成树是一个图中的边集合,这些边连接了所有顶点,使得连接的权重之和最小,同时保持图的连通性。 以下是Prim算法的基本步骤: 1. 选择一个起始顶点(通常是任意一个顶点),并将其加入最小生成树中。 2. 初始化一个集合S,只包含起点,初始时S是空的。 3. 对于图中的每一个未被加入S的顶点v,计算从S中任一顶点u到v的边(u-v)的权重,并找到这条边中权重最小的那条。如果这条边的终点v还没有被加入S,则将v添加到S中,并更新这条边作为S到v的最短路径。 4. 重复步骤3,直到S包含了所有顶点。此时S就是最小生成树。 值得注意的是,Prim算法可以扩展到带权重的边,但假设每条边都是非负的,因为负权边可能会导致算法产生错误的结果。当图中存在负权环(即存在一个顶点可以经过一系列边回到起点,且总权重为负)时,算法无法保证正确性。
相关问题

用破圈法求一个带权连通图的最小生成树用c++实现

好的,我会回答你的问题。 破圈法是一种求带权连通图最小生成树的经典算法之一,它的基本思想是:从连通图中任选一条边作为生成树的第一条边,然后依次添加剩余的边,直到生成一棵最小生成树。 下面是用C++实现破圈法求解带权连通图的最小生成树的示例代码: ```c++ #include <iostream> #include <algorithm> #include <vector> using namespace std; const int MAXN = 1005; // 最大顶点数 const int INF = 0x3f3f3f3f; // 无穷大 struct Edge { int u, v, w; Edge(int u_, int v_, int w_) : u(u_), v(v_), w(w_) {} }; int n, m; // 顶点数、边数 int fa[MAXN]; // 并查集数组 int find(int x) { // 并查集查找父节点 return (fa[x] == x) ? x : (fa[x] = find(fa[x])); } void merge(int x, int y) { // 并查集合并 fa[find(x)] = find(y); } bool cmp(Edge a, Edge b) { // 边长从小到大排序 return a.w < b.w; } int Kruskal(vector<Edge> &edges) { // 破圈法求最小生成树 int ans = 0; sort(edges.begin(), edges.end(), cmp); // 边长从小到大排序 for (int i = 1; i <= n; i++) fa[i] = i; // 初始化并查集 for (int i = 0; i < m; i++) { int u = edges[i].u, v = edges[i].v, w = edges[i].w; if (find(u) != find(v)) { // 判断是否在同一连通块 merge(u, v); // 合并连通块 ans += w; // 加上边长 } } return ans; } int main() { cin >> n >> m; vector<Edge> edges; for (int i = 0; i < m; i++) { int u, v, w; cin >> u >> v >> w; edges.push_back(Edge(u, v, w)); } int ans = Kruskal(edges); cout << ans << endl; return 0; } ``` 上述代码中,首先定义了一个边的结构体Edge,其中包括边的起点、终点和边权重。然后,定义了并查集的find和merge操作及判断两个点是否在同一连通块的函数。接着,定义了一个比较函数cmp,用于将边按照权值从小到大排序。最后,实现了破圈法的Kruskal函数,其中对边进行排序,初始化并查集,依次添加边,并判断是否在同一连通块,最后返回最小生成树的边权和。在main函数中,读入顶点数、边数和边的信息,调用Kruskal函数求解最小生成树,并输出结果。 希望我的回答能够帮到你,如果你还有其他问题,可以继续问我哦。

用破圈法求一个带权连通图的最小生成树,用从c语言实现

好的,我来解答你的问题。 首先,我们需要了解破圈法求解最小生成树的过程。破圈法的基本思想是:通过找到环上的最大边,将环破开并将其变成树上的边,从而得到更小的生成树。破圈法的具体步骤如下: 1. 初始化。将所有边按照权值从小到大排序,并将所有点看作单独的连通块。 2. 扫描边。将排序后的边从小到大扫描一遍,遇到一条边连接的两个点属于不同的连通块,则将这两个连通块合并,并将这条边加入生成树中;如果这条边连接的两个点已经在同一个连通块中,则说明这条边会形成环,需要进行环的破解。 3. 破解环。在形成环的情况下,我们需要找到环上的最大边,并将其从环上删除,从而将环破开。这里需要用到并查集来判断环上的边是否在同一个连通块中,并找到环上的最大边。 4. 重复步骤 2 和 3,直到所有点都在同一个连通块中,此时生成的树即为最小生成树。 下面是一个用 C 语言实现破圈法求解最小生成树的示例代码: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAXN 1000 #define INF 0x3f3f3f3f typedef struct { int u, v, w; } Edge; int n, m; int fa[MAXN]; Edge edges[MAXN]; int cmp(const void *a, const void *b) { return ((Edge*)a)->w - ((Edge*)b)->w; } int find(int x) { if (fa[x] == x) return x; else return fa[x] = find(fa[x]); } int merge(int x, int y) { int fx = find(x), fy = find(y); if (fx != fy) { fa[fx] = fy; return 1; } return 0; } void kruskal() { int i, j; for (i = 1; i <= n; i++) fa[i] = i; for (i = 0, j = 0; i < m && j < n - 1; i++) { if (merge(edges[i].u, edges[i].v)) { j++; printf("%d %d %d\n", edges[i].u, edges[i].v, edges[i].w); } } } void break_circle() { int i, j; for (i = 1; i <= n; i++) fa[i] = i; for (i = 0, j = 0; i < m && j < n - 1; i++) { if (merge(edges[i].u, edges[i].v)) { j++; } else { int u = edges[i].u, v = edges[i].v, w = edges[i].w; int fu = find(u), fv = find(v); int maxw = -INF, maxu, maxv; while (fu != fv) { if (fu == u) { if (edges[fa[u]].w > maxw) { maxw = edges[fa[u]].w; maxu = u; maxv = v; } u = fa[u]; } else { if (edges[fa[v]].w > maxw) { maxw = edges[fa[v]].w; maxu = u; maxv = v; } v = fa[v]; } fu = find(u); fv = find(v); } if (w < maxw) { printf("%d %d %d\n", u, v, w); edges[fa[maxu]].u = maxu; edges[fa[maxu]].v = maxv; edges[fa[maxu]].w = -1; } } } } int main() { int i; scanf("%d%d", &n, &m); for (i = 0; i < m; i++) { scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].w); } qsort(edges, m, sizeof(Edge), cmp); break_circle(); return 0; } ``` 以上代码中,我们先通过 qsort 函数对所有边按照权值从小到大排序,然后对所有边进行扫描,如果扫描到一条边连接的两个点在不同的连通块中,则将这两个连通块合并,并将这条边加入生成树中;如果扫描到一条边连接的两个点在同一个连通块中,则说明这条边会形成环,需要进行环的破解。在破解环的过程中,我们需要用到并查集来判断环上的边是否在同一个连通块中,并找到环上的最大边。破解环的过程可以在扫描边的过程中进行,这样可以避免重复扫描边。最后,输出生成的最小生成树即可。 希望能够帮助到你!

相关推荐

最新推荐

recommend-type

基于最小度约束下的最小生成树算法

传统的MST算法,如Prim算法、Kruskal算法以及破圈法,虽然能够找到无向图的最小权重支撑树,但它们并不考虑顶点的度数限制。 度约束最小生成树(Degree-Constrained Minimum Spanning Tree, DCMST)问题则引入了...
recommend-type

(2024)跳槽涨薪必备精选面试题.pdf

(2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf
recommend-type

应用服务器和部分网络安全设备技术参数.doc

服务器
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层: