def print_result(self, centers): whs = self.whs centers = centers[np.argsort(centers.prod(1))] x, best = self.metric(whs, centers) bpr, aat = ( best > self.thresh).mean(), (x > self.thresh).mean() * self.n logger.info( 'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' % (self.thresh, bpr, aat)) logger.info( 'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: ' % (self.n, self.size, x.mean(), best.mean(), x[x > self.thresh].mean())) logger.info('%d anchor cluster result: [w, h]' % self.n) for w, h in centers: logger.info('[%d, %d]' % (round(w), round(h)))
时间: 2024-03-26 12:37:19 浏览: 108
这是一个函数的定义,用于输出anchor boxes聚类结果。函数参数有self和centers,其中self代表类的实例本身,centers是经过聚类算法得到的簇中心点坐标。函数首先对centers按照簇大小从小到大排序,然后根据阈值计算最佳召回率和超过阈值的anchor boxes个数。接着输出一些聚类结果指标,包括平均和最好的指标值以及超过阈值的anchor boxes的平均值。最后输出每个anchor box的宽度和高度。
相关问题
def __init__(self, n_inputs, n_rules, learning_rate=0.01): self.n = n_inputs self.m = n_rules self.lr = learning_rate # Initialize MF parameters using k-means clustering kmeans = KMeans(n_clusters=1) x0 = [i for i in np.zeros(self.n)] kmeans.fit([x0]) centroids = kmeans.cluster_centers_.flatten() sigmas = np.ones(self.m) * (kmeans.inertia_ / self.m) ** 0.5 self.params = { "mf_params": np.random.rand(self.n*self.m*2), "out_params": np.random.rand((self.n+1)*self.m,) }修正错误
根据您提供的代码,可以将其修正如下:
```python
def __init__(self, n_inputs, n_rules, learning_rate=0.01):
self.n = n_inputs
self.m = n_rules
self.lr = learning_rate
# Initialize MF parameters using k-means clustering
kmeans = KMeans(n_clusters=self.m)
x0 = np.random.rand(100, self.n) # 用于聚类的样本点
kmeans.fit(x0)
centroids = kmeans.cluster_centers_ # 获取聚类中心
sigmas = np.ones(self.m) * (kmeans.inertia_ / self.m) ** 0.5 # 计算标准差
self.params = {
"mf_params": np.concatenate([centroids.flatten(), sigmas.flatten()]),
"out_params": np.random.rand((self.n+1)*self.m,)
}
```
在修正后的代码中,我们将k-means聚类的聚类数设置为`self.m`,并使用随机生成的样本点`x0`进行聚类。然后,我们通过`kmeans.cluster_centers_`获取每个聚类的中心点,并通过计算`sigmas`来确定高斯隶属度函数的标准差。最后,我们将所有的高斯隶属度函数参数连接起来,构建成一个包含所有参数的`self.params["mf_params"]`数组。
翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
这段程序是一个分类模型的辅助函数,包括了绘制决策边界、sigmoid函数和加载数据集的函数。具体实现如下:
```python
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# 设置最小值和最大值,并给它们一些填充
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# 生成一个网格,网格中点的距离为h
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测函数值
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制轮廓和训练样本
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m / 2) # 每个类的样本数量
# 生成数据集
D = 2 # 特征维度
X = np.zeros((m, D)) # 特征矩阵
Y = np.zeros((m, 1), dtype='uint8') # 标签向量
a = 4 # 花的最大半径
for j in range(2):
ix = range(N*j, N*(j+1))
t = np.linspace(j*3.12, (j+1)*3.12, N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
```
这段程序中包含了以下函数:
- `plot_decision_boundary(model, X, y)`:绘制分类模型的决策边界,其中`model`是分类模型,`X`是特征矩阵,`y`是标签向量。
- `sigmoid(x)`:实现sigmoid函数。
- `load_planar_dataset()`:加载一个二维的花瓣数据集。
- `load_extra_datasets()`:加载五个其他数据集。
阅读全文