c实现d大数rsa算法
时间: 2023-09-03 08:13:23 浏览: 127
RSA算法是一种公钥密码算法,其主要原理是基于大素数分解的困难性,实现加解密过程中涉及到大数运算。下面是一个使用C语言实现大数RSA算法的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <ctype.h>
#define MAX_DIGIT 1024
typedef struct {
int digits[MAX_DIGIT];
int size;
} BigNum;
void initBigNum(BigNum *num) {
int i;
for (i = 0; i < MAX_DIGIT; i++) {
num->digits[i] = 0;
}
num->size = 0;
}
void printBigNum(BigNum *num) {
int i;
for (i = num->size - 1; i >= 0; i--) {
printf("%d", num->digits[i]);
}
printf("\n");
}
void setBigNum(BigNum *num, char *str) {
int len, i, j;
initBigNum(num);
len = strlen(str);
for (i = len - 1, j = 0; i >= 0; i--, j++) {
num->digits[j] = str[i] - '0';
}
num->size = len;
}
void copyBigNum(BigNum *dest, BigNum *src) {
int i;
for (i = 0; i < src->size; i++) {
dest->digits[i] = src->digits[i];
}
dest->size = src->size;
}
void addBigNum(BigNum *result, BigNum *num1, BigNum *num2) {
int i, carry = 0, sum;
initBigNum(result);
for (i = 0; i < num1->size || i < num2->size; i++) {
sum = num1->digits[i] + num2->digits[i] + carry;
result->digits[i] = sum % 10;
carry = sum / 10;
result->size++;
}
if (carry) {
result->digits[result->size++] = carry;
}
}
void subBigNum(BigNum *result, BigNum *num1, BigNum *num2) {
int i, borrow = 0, diff;
initBigNum(result);
for (i = 0; i < num1->size || i < num2->size; i++) {
diff = num1->digits[i] - borrow - num2->digits[i];
if (diff < 0) {
borrow = 1;
diff += 10;
}
else {
borrow = 0;
}
result->digits[i] = diff;
result->size++;
}
while (result->size > 1 && result->digits[result->size - 1] == 0) {
result->size--;
}
}
void mulBigNum(BigNum *result, BigNum *num1, BigNum *num2) {
int i, j, carry = 0, product;
initBigNum(result);
for (i = 0; i < num1->size; i++) {
carry = 0;
for (j = 0; j < num2->size; j++) {
product = num1->digits[i] * num2->digits[j] + carry + result->digits[i + j];
result->digits[i + j] = product % 10;
carry = product / 10;
}
if (carry) {
result->digits[i + j] = carry;
}
}
result->size = i + j;
while (result->size > 1 && result->digits[result->size - 1] == 0) {
result->size--;
}
}
void divBigNum(BigNum *quotient, BigNum *dividend, BigNum *divisor) {
int i, j;
BigNum temp, remainder;
initBigNum(quotient);
copyBigNum(&temp, dividend);
while (temp.size >= divisor->size) {
initBigNum(&remainder);
remainder.size = temp.size;
for (i = 0; i < temp.size; i++) {
remainder.digits[i] = temp.digits[i];
}
remainder.size = temp.size;
for (i = 0; i < temp.size - divisor->size; i++) {
remainder.digits[i + divisor->size] = remainder.digits[i];
}
remainder.size += divisor->size;
for (i = 0; i < divisor->size; i++) {
remainder.digits[i] = 0;
}
while (remainder.size > 1 && remainder.digits[remainder.size - 1] == 0) {
remainder.size--;
}
for (j = 9; j >= 0; j--) {
setBigNum(divisor, "0");
divisor->digits[0] = j;
mulBigNum(&temp, divisor, quotient);
if (compareBigNum(&temp, &remainder) <= 0) {
break;
}
}
setBigNum(divisor, "0");
divisor->digits[0] = j;
mulBigNum(quotient, divisor, quotient);
subBigNum(&temp, &remainder, divisor);
copyBigNum(&remainder, &temp);
copyBigNum(&temp, "ient);
initBigNum(quotient);
for (i = remainder.size - 1; i >= 0; i--) {
quotient->digits[i] = temp.digits[i + remainder.size - divisor->size];
quotient->size++;
}
while (quotient->size > 1 && quotient->digits[quotient->size - 1] == 0) {
quotient->size--;
}
}
copyBigNum(quotient, &temp);
while (quotient->size > 1 && quotient->digits[quotient->size - 1] == 0) {
quotient->size--;
}
}
void modBigNum(BigNum *result, BigNum *num, BigNum *modulus) {
BigNum quotient;
divBigNum("ient, num, modulus);
mulBigNum(result, modulus, "ient);
subBigNum(result, num, result);
}
int compareBigNum(BigNum *num1, BigNum *num2) {
int i;
if (num1->size > num2->size) {
return 1;
}
if (num1->size < num2->size) {
return -1;
}
for (i = num1->size - 1; i >= 0; i--) {
if (num1->digits[i] > num2->digits[i]) {
return 1;
}
if (num1->digits[i] < num2->digits[i]) {
return -1;
}
}
return 0;
}
void powModBigNum(BigNum *result, BigNum *base, BigNum *exponent, BigNum *modulus) {
BigNum temp;
initBigNum(result);
result->digits[0] = 1;
result->size = 1;
while (exponent->size > 0) {
if (exponent->digits[0] % 2 == 1) {
mulBigNum(&temp, result, base);
modBigNum(result, &temp, modulus);
}
divBigNum(exponent, exponent, modulus);
mulBigNum(&temp, base, base);
modBigNum(base, &temp, modulus);
}
}
void generateBigPrime(BigNum *result, int numDigits) {
int i;
BigNum candidate;
initBigNum(result);
initBigNum(&candidate);
while (1) {
for (i = 0; i < numDigits; i++) {
candidate.digits[i] = rand() % 10;
}
candidate.digits[numDigits - 1] |= 1;
candidate.size = numDigits;
if (isPrime(&candidate)) {
copyBigNum(result, &candidate);
return;
}
}
}
int isPrime(BigNum *num) {
int i;
BigNum a, quotient, remainder, testNum;
setBigNum(&testNum, "2");
if (compareBigNum(num, &testNum) <= 0) {
return 1;
}
if (num->digits[0] % 2 == 0) {
return 0;
}
setBigNum(&testNum, "1");
for (i = 0; i < 20; i++) {
generateBigNum(&a, num->size - 1);
if (compareBigNum(&a, &testNum) == 0) {
a.digits[0] = 2;
}
if (compareBigNum(&a, num) >= 0) {
a.digits[0] = num->digits[0] - 2;
}
powModBigNum(&remainder, &a, num, num);
if (compareBigNum(&remainder, &testNum) != 0) {
return 0;
}
}
return 1;
}
void generateBigRSA(BigNum *p, BigNum *q, BigNum *n, BigNum *e, BigNum *d) {
int numDigits = 256;
BigNum phi, temp;
initBigNum(p);
initBigNum(q);
initBigNum(n);
initBigNum(e);
initBigNum(d);
generateBigPrime(p, numDigits);
generateBigPrime(q, numDigits);
mulBigNum(n, p, q);
subBigNum(&temp, p, &temp);
subBigNum(&phi, q, &temp);
setBigNum(e, "65537");
divBigNum(d, &temp, e);
powModBigNum(&temp, e, d, &phi);
}
void encryptRSA(BigNum *ciphertext, BigNum *message, BigNum *e, BigNum *n) {
powModBigNum(ciphertext, message, e, n);
}
void decryptRSA(BigNum *plaintext, BigNum *ciphertext, BigNum *d, BigNum *n) {
powModBigNum(plaintext, ciphertext, d, n);
}
int main() {
BigNum p, q, n, e, d, plaintext, ciphertext, decryptedtext;
char message[] = "Hello World!";
srand(time(NULL));
setBigNum(&plaintext, message);
generateBigRSA(&p, &q, &n, &e, &d);
printf("p = ");
printBigNum(&p);
printf("q = ");
printBigNum(&q);
printf("n = ");
printBigNum(&n);
printf("e = ");
printBigNum(&e);
printf("d = ");
printBigNum(&d);
encryptRSA(&ciphertext, &plaintext, &e, &n);
printf("Ciphertext: ");
printBigNum(&ciphertext);
decryptRSA(&decryptedtext, &ciphertext, &d, &n);
printf("Plaintext: ");
printBigNum(&decryptedtext);
return 0;
}
```
该示例代码实现了大数加、减、乘、除、取模、比较、幂模等基本操作,以及生成大素数、生成RSA公私钥、加密解密等操作。其中,大数操作采用数组实现,支持高精度计算。RSA算法的具体实现过程,包括生成公私钥、加密解密等,都是基于大数操作实现的。
阅读全文