假设有四个值,优化这段代码ax.legend(loc='upper right')使得两个值在右上角,两个值在右下角
时间: 2023-06-16 09:04:39 浏览: 215
您可以使用以下代码:
```python
import matplotlib.pyplot as plt
# 假设四个值为 a, b, c, d
# 绘制图像代码 ...
# 设置图例
legend_labels = ['a', 'b', 'c', 'd']
handles, labels = ax.get_legend_handles_labels()
# 将图例分成两组
handles1, labels1 = handles[:2], labels[:2]
handles2, labels2 = handles[2:], labels[2:]
# 绘制两个图例
ax.legend(handles1, labels1, loc='upper right')
ax.legend(handles2, labels2, loc='lower right')
# 显示图像
plt.show()
```
这样就可以将左上角的两个值作为第一个图例,右下角的两个值作为第二个图例显示在右下角。
相关问题
优化这段代码,保证label两个在右上角,两个在右下角,代码如下;import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 1000) lines = [np.sin(x), np.cos(x), -np.cos(x), -np.sin(x)] line_styles = ['-', '-.', '--', ':'] line_colors = ['red', 'blue', 'green', 'black'] fig, ax = plt.subplots() for i in range(4): ax.plot(x, lines[i], linestyle=line_styles[i], color=line_colors[i], label=f'Line {i+1}') ax.legend(loc='upper right') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_title('Trig Functions') plt.show()
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 10, 1000)
lines = [np.sin(x), np.cos(x), -np.cos(x), -np.sin(x)]
line_styles = ['-', '-.', '--', ':']
line_colors = ['red', 'blue', 'green', 'black']
fig, ax = plt.subplots()
for i in range(4):
if i < 2:
ax.plot(x, lines[i], linestyle=line_styles[i], color=line_colors[i], label=f'Line {i+1}',
transform=ax.transAxes, clip_on=False)
else:
ax.plot(x, lines[i], linestyle=line_styles[i], color=line_colors[i], label=f'Line {i+1}',
transform=ax.transAxes, clip_on=False)
ax.legend(loc='upper right')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_title('Trig Functions')
ax.set_ylim([-1.2,1.2])
plt.show()
优化思路:使用 transform 和 clip_on 属性来控制 label 的位置。对于前两个线条,transform 设置为 ax.transAxes(以轴坐标为基准),clip_on 设置为 False(不显示在图外),对于后两个线条同理。同时设置 y 轴范围为 [-1.2,1.2],以确保四个 label 都在图内。
ax[0].legend(loc='upper right')设置了位置后,little没了
当您在子图上使用legend()函数时,它将覆盖原始的图例。如果您想要在子图上添加图例,可以使用ax.legend()函数而不是plt.legend()函数。以下是一个示例代码:
```python
import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset("tips")
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
sns.scatterplot(x="total_bill", y="tip", hue="sex", data=tips, ax=ax[0])
ax[0].set_title('散点图')
ax[0].legend(loc='upper right')
sns.boxplot(x="day", y="total_bill", hue="sex", data=tips, ax=ax[1])
ax[1].set_title('箱线图')
ax[1].legend(loc='upper right')
plt.show()
```
在这个例子中,我们使用了两个子图,一个散点图和一个箱线图。我们使用ax.legend()函数而不是plt.legend()函数在每个子图上添加图例。这样,就可以在每个子图上添加图例,并保留原始的图例。
阅读全文
相关推荐

















