for i in range(len(states)): max_p[0][i] = start_p[i] * emit_p[i][obs[0]] path[i][0] = i for t in range(1, len(obs)): newpath = np.zeros((len(states), len(obs))) for y in range(len(states)): prob = -1 for y0 in range(len(states)): nprob = max_p[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]] if nprob > prob: prob = nprob state = y0 # 记录路径 max_p[t][y] = prob for m in range(t): newpath[y][m] = path[state][m] newpath[y][t] = y path = newpath max_prob = -1 path_state = 0给这段代码加上详细注释
时间: 2024-02-14 09:35:19 浏览: 118
# 定义变量
states = ['Rainy', 'Sunny'] # 可能的状态
obs = ['walk', 'shop', 'clean'] # 观测序列
start_p = [0.6, 0.4] # 初始概率
trans_p = [[0.7, 0.3], [0.4, 0.6]] # 转移概率
emit_p = [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]] # 发射概率
# 初始化 max_p 和 path
max_p = np.zeros((len(obs), len(states)))
path = np.zeros((len(states), len(obs)))
# 初始化 max_p 和 path 的第一列
for i in range(len(states)):
max_p[0][i] = start_p[i] * emit_p[i][obs[0]]
path[i][0] = i
# 遍历观测序列
for t in range(1, len(obs)):
# 创建新路径
newpath = np.zeros((len(states), len(obs)))
# 遍历可能的状态
for y in range(len(states)):
prob = -1
# 遍历上一时刻的所有状态
for y0 in range(len(states)):
# 计算概率
nprob = max_p[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]]
# 如果概率更大,更新 prob 和 state,并记录路径
if nprob > prob:
prob = nprob
state = y0
max_p[t][y] = prob
for m in range(t):
newpath[y][m] = path[state][m]
# 记录当前状态
newpath[y][t] = y
# 更新路径和最大概率
path = newpath
max_prob = -1
path_state = 0
阅读全文