给出如下一个三层的神经网络,x1=0.5; x2=0.7; w1=0.2; w2=0.4; w3=0.5; w4=0.3; w5=0.7; w6=0.5; w7=0.4; w8=0.2; w9=0.6, 激活函数f为Sigmod,损失函数为 ,目标值y为0.5,学习率α=0.4。
时间: 2023-08-24 11:06:34 浏览: 166
这个神经网络的结构不清楚,我假设它是一个具有两个输入节点、三个隐藏节点和一个输出节点的前馈神经网络,即输入层有两个节点,隐藏层有三个节点,输出层有一个节点。
首先进行前向传播计算,计算隐藏层的输出值:
z1 = x1 * w1 + x2 * w2 = 0.2 * 0.5 + 0.4 * 0.7 = 0.46
z2 = x1 * w3 + x2 * w4 = 0.5 * 0.5 + 0.3 * 0.7 = 0.44
z3 = x1 * w5 + x2 * w6 = 0.7 * 0.7 + 0.5 * 0.5 = 0.59
然后将隐藏层的输出值带入激活函数Sigmoid中,计算输出层的输出值:
y1 = f(z1 * w7 + z2 * w8 + z3 * w9) = f(0.46 * 0.4 + 0.44 * 0.2 + 0.59 * 0.6) = f(0.6666) = 0.661
计算损失函数的值:
L = (y - y1)^2 / 2 = (0.5 - 0.661)^2 / 2 = 0.025
然后进行反向传播,计算输出层的误差:
δ1 = (y1 - y) * f'(z1 * w7 + z2 * w8 + z3 * w9) = (0.661 - 0.5) * f'(0.6666) = 0.034
f'(x)表示Sigmoid函数的导数,即f'(x) = f(x) * (1 - f(x))。
然后计算隐藏层的误差:
δ2 = δ1 * w7 * f'(z1) = 0.034 * 0.4 * f'(0.46) = 0.008
δ3 = δ1 * w8 * f'(z2) = 0.034 * 0.2 * f'(0.44) = 0.005
δ4 = δ1 * w9 * f'(z3) = 0.034 * 0.6 * f'(0.59) = 0.009
最后根据误差计算权值的调整量:
Δw7 = -α * δ1 * z1 = -0.4 * 0.034 * 0.46 = -0.006
Δw8 = -α * δ1 * z2 = -0.4 * 0.034 * 0.44 = -0.005
Δw9 = -α * δ1 * z3 = -0.4 * 0.034 * 0.59 = -0.008
Δw1 = -α * δ2 * x1 = -0.4 * 0.008 * 0.5 = -0.002
Δw2 = -α * δ2 * x2 = -0.4 * 0.008 * 0.7 = -0.003
Δw3 = -α * δ3 * x1 = -0.4 * 0.005 * 0.5 = -0.001
Δw4 = -α * δ3 * x2 = -0.4 * 0.005 * 0.7 = -0.001
Δw5 = -α * δ4 * x1 = -0.4 * 0.009 * 0.7 = -0.003
Δw6 = -α * δ4 * x2 = -0.4 * 0.009 * 0.5 = -0.002
最后更新权值:
w1 = w1 + Δw1 = 0.2 - 0.002 = 0.198
w2 = w2 + Δw2 = 0.4 - 0.003 = 0.397
w3 = w3 + Δw3 = 0.5 - 0.001 = 0.499
w4 = w4 + Δw4 = 0.3 - 0.001 = 0.299
w5 = w5 + Δw5 = 0.7 - 0.003 = 0.697
w6 = w6 + Δw6 = 0.5 - 0.002 = 0.498
w7 = w7 + Δw7 = 0.4 - 0.006 = 0.394
w8 = w8 + Δw8 = 0.2 - 0.005 = 0.195
w9 = w9 + Δw9 = 0.6 - 0.008 = 0.592
这样就完成了一次训练的过程,可以根据需要进行多次训练,直到达到期望的精度。
阅读全文