data_dir = os.path.join(base_dir, "Data", "cifar-10-batches-py")是什么意思
时间: 2024-04-26 12:24:01 浏览: 143
这行代码定义了一个名为 `data_dir` 的变量,它是由 Python 中的 `os.path.join()` 函数将三个字符串拼接而成的。`os.path.join()` 函数是 Python 标准库 `os` 模块中的一个函数,用于连接路径中的各个部分(文件夹名、文件名等),并返回一个完整的路径。在这个代码中,`base_dir` 是一个表示根目录的字符串变量,`Data` 和 `cifar-10-batches-py` 分别是两个文件夹的名称。`os.path.join()` 函数将这三个部分连接在一起,形成一个完整的目录路径,保存在 `data_dir` 变量中。
这段代码的意思是将 `base_dir`、`Data` 和 `cifar-10-batches-py` 这三个字符串连接在一起,形成一个完整的目录路径,用于指定 CIFAR-10 数据集的存储路径。
相关问题
#创建一个dataset类。 import os import pandas as pd from torchvision.io import read_image from torch.utils.data import Dataset from torch.utils.data import DataLoader import chardet with open(r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', 'rb') as fp: result = chardet.detect(fp.read()) print(result) class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): #self.img_labels = pd.read_csv(annotations_file, sep=' ', header=None, encoding=result['encoding']) self.img_labels = pd.read_csv(annotations_file, sep=';', header=None, encoding=result['encoding']) self.img_labels[0] = self.img_labels[0].astype(str).str.cat(sep=' ') # 合并第一列为完整文件名 self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label train_dataset = CustomImageDataset(annotations_file=r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', img_dir = r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\data_batch_1',transform=None, target_transform=None) test_dataset = CustomImageDataset(annotations_file=r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\batches.meta', img_dir = r'C:\Users\WXF\data\cifar10\cifar-10-batches-py\test_batch',transform=None, target_transform=None) train_features, train_labels = next(iter(train_dataloader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.show() print(f"Label: {label}")
这段代码创建了一个自定义的图像数据集类 CustomImageDataset,用于读取 CIFAR-10 数据集中的图像数据和标签。该类继承了 PyTorch 中的 Dataset 类,并实现了 __init__、__len__ 和 __getitem__ 方法。其中,__init__ 方法用于初始化数据集,__len__ 方法返回数据集中样本的数量,__getitem__ 方法返回给定索引的图像数据和标签。在代码中,使用 pandas 库读取 CIFAR-10 数据集中的标签文件,然后根据文件名和路径读取图像数据,并将其返回。
此外,代码还创建了两个数据集对象 train_dataset 和 test_dataset,分别用于训练和测试。最后,使用 PyTorch 中的 DataLoader 类加载数据集对象,生成用于训练模型的数据批次。代码还展示了如何读取数据批次中的图像数据和标签,并使用 matplotlib 库显示图像和标签。
import pickle import numpy as np import os # from scipy.misc import imread def load_CIFAR_batch(filename): with open(filename, 'rb') as f: datadict = pickle.load(f, encoding='bytes') X = datadict[b'data'] Y = datadict[b'labels'] X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): xs = [] ys = [] for b in range(1, 2): f = os.path.join(ROOT, 'data_batch_%d' % (b,)) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch')) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): cifar10_dir = r'D:\daima\cifar-10-python\cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, } def load_models(models_dir): models = {} for model_file in os.listdir(models_dir): with open(os.path.join(models_dir, model_file), 'rb') as f: try: models[model_file] = pickle.load(f)['model'] except pickle.UnpicklingError: continue return models这是一个加载cifar10数据集的函数,如何修改使其能加载mnist数据集,不使用TensorFlow
可以使用以下代码加载MNIST数据集:
```
import gzip
import os
import pickle
import numpy as np
def load_mnist(path, kind='train'):
labels_path = os.path.join(path, '%s-labels-idx1-ubyte.gz' % kind)
images_path = os.path.join(path, '%s-images-idx3-ubyte.gz' % kind)
with gzip.open(labels_path, 'rb') as lbpath:
labels = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8)
with gzip.open(images_path, 'rb') as imgpath:
images = np.frombuffer(imgpath.read(), dtype=np.uint8, offset=16).reshape(len(labels), 784)
return images, labels
def get_mnist_data(num_training=5000, num_validation=500, num_test=500):
mnist_dir = r'D:\daima\mnist' # 修改为mnist数据集所在的目录
X_train, y_train = load_mnist(mnist_dir, kind='train')
X_test, y_test = load_mnist(mnist_dir, kind='t10k')
print(X_train.shape)
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
X_train = X_train.astype('float32') / 255
X_val = X_val.astype('float32') / 255
X_test = X_test.astype('float32') / 255
return {
'X_train': X_train,
'y_train': y_train,
'X_val': X_val,
'y_val': y_val,
'X_test': X_test,
'y_test': y_test,
}
```
这个函数将会返回训练集、验证集和测试集的图像和标签。其中,图像是一个形如`(num_samples, 784)`的数组,标签是一个形如`(num_samples,)`的数组。
阅读全文