邻接表存储的无向图求连通分量个数并输出各连通分量的首顶点,完整代码c语言加算法思想
时间: 2024-10-22 14:23:48 浏览: 40
邻接表是一种常用的数据结构用于表示稀疏图,其中每个顶点都有一个链接到其相邻顶点的列表。求解无向图的连通分量个数以及每个连通分量的首顶点,可以采用深度优先搜索(DFS)或者广度优先搜索(BFS)算法。
以下是使用C语言实现的一个简单示例,这里我们选择使用DFS:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct {
int vertex;
struct Node *next;
} Node;
typedef struct Graph {
int vertices;
Node **adj;
} Graph;
void add_edge(Graph *graph, int src, int dest) {
graph->adj[src] = (Node*)malloc(sizeof(Node));
graph->adj[src]->vertex = dest;
graph->adj[src]->next = NULL;
if(dest != src){
graph->adj[dest] = (Node*)malloc(sizeof(Node));
graph->adj[dest]->vertex = src;
graph->adj[dest]->next = NULL;
}
}
void DFSvisit(int vertex, bool visited[], Graph *graph, int *component) {
visited[vertex] = true;
*component += 1; //标记当前连通分量
Node *temp = graph->adj[vertex];
while(temp != NULL) {
if(!visited[temp->vertex]) {
DFSvisit(temp->vertex, visited, graph, component);
}
temp = temp->next;
}
}
int count_connected_components(Graph *graph) {
int num_components = 0;
int* visited = malloc(graph->vertices * sizeof(bool));
for(int i = 0; i < graph->vertices; i++) {
visited[i] = false;
}
for(int i = 0; i < graph->vertices; i++) {
if(!visited[i]) { // 如果节点未访问过
DFSvisit(i, visited, graph, &num_components); // 开始从i开始做DFS
}
}
free(visited);
return num_components;
}
int main() {
Graph g;
int num_vertices;
printf("Enter number of vertices: ");
scanf("%d", &num_vertices);
g.vertices = num_vertices;
g.adj = (Node**)malloc(num_vertices * sizeof(Node*));
int u, v;
printf("Enter edges (source vertex then destination vertex): \n");
for(int i = 0; i < num_vertices - 1; i++) {
scanf("%d %d", &u, &v);
add_edge(&g, u, v);
}
int components = count_connected_components(&g);
printf("\nNumber of connected components: %d\n", components);
// 输出每个连通分量的首顶点
for(int i = 0; i < components; i++) {
int start_vertex = -1;
for(int j = 0; j < num_vertices; j++) {
if(g.adj[j] && !g.adj[j]->next) {
start_vertex = j;
break;
}
}
printf("Component %d: Vertex %d\n", i+1, start_vertex);
}
return 0;
}
```
在这个代码里,首先构建了一个无向图,然后通过`count_connected_components`函数使用DFS遍历图,并记录连通分量的数量。最后,遍历整个邻接表找出每个连通分量的第一个顶点。
阅读全文