SMO+PLL的C代码
时间: 2023-06-17 12:02:30 浏览: 234
以下是一个简单的SMO+PLL算法的C代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#define N 1000
#define TOL 1e-3
#define K 100
#define C 10
#define MAX_ITER 100
double data[N][2], alpha[N], b = 0;
int y[N];
double rand_double(double a, double b) {
return ((double)rand() / RAND_MAX) * (b - a) + a;
}
double kernel(int i, int j) {
double x1 = data[i][0], y1 = data[i][1];
double x2 = data[j][0], y2 = data[j][1];
return x1 * x2 + y1 * y2;
}
double predict(int i) {
double res = 0;
for (int j = 0; j < N; j++) {
res += alpha[j] * y[j] * kernel(j, i);
}
res += b;
return res;
}
void train() {
int iter = 0;
while (iter < MAX_ITER) {
int num_changed = 0;
for (int i = 0; i < N; i++) {
double Ei = predict(i) - y[i];
if ((y[i] * Ei < -TOL && alpha[i] < C) || (y[i] * Ei > TOL && alpha[i] > 0)) {
int j = i;
while (j == i) {
j = (int)rand_double(0, N);
}
double Ej = predict(j) - y[j];
double alpha_i_old = alpha[i], alpha_j_old = alpha[j];
double L, H;
if (y[i] != y[j]) {
L = fmax(0, alpha[j] - alpha[i]);
H = fmin(C, C + alpha[j] - alpha[i]);
} else {
L = fmax(0, alpha[i] + alpha[j] - C);
H = fmin(C, alpha[i] + alpha[j]);
}
if (L == H) {
continue;
}
double eta = 2 * kernel(i, j) - kernel(i, i) - kernel(j, j);
if (eta >= 0) {
continue;
}
alpha[j] -= y[j] * (Ei - Ej) / eta;
if (alpha[j] > H) {
alpha[j] = H;
} else if (alpha[j] < L) {
alpha[j] = L;
}
if (fabs(alpha[j] - alpha_j_old) < TOL) {
continue;
}
alpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j]);
double b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * kernel(i, i) - y[j] * (alpha[j] - alpha_j_old) * kernel(i, j);
double b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * kernel(i, j) - y[j] * (alpha[j] - alpha_j_old) * kernel(j, j);
if (0 < alpha[i] && alpha[i] < C) {
b = b1;
} else if (0 < alpha[j] && alpha[j] < C) {
b = b2;
} else {
b = (b1 + b2) / 2;
}
num_changed++;
}
}
if (num_changed == 0) {
iter++;
} else {
iter = 0;
}
}
}
int main() {
srand((unsigned int)time(NULL));
for (int i = 0; i < N; i++) {
double x = rand_double(-1, 1);
double y = rand_double(-1, 1);
if (x * x + y * y < 0.5) {
this->y[i] = 1;
} else {
this->y[i] = -1;
}
data[i][0] = x;
data[i][1] = y;
alpha[i] = 0;
}
train();
return 0;
}
```
这段代码实现了一个简单的线性支持向量机,使用SMO+PLL算法进行训练。其中,`data`是训练数据,`y`是类别标签,`alpha`是对偶变量,`b`是偏置。函数`kernel`计算两个向量的内积,函数`predict`计算给定样本的预测值。函数`train`使用SMO+PLL算法进行模型训练。在主函数中,先随机生成一些数据,然后调用`train`函数进行模型训练。
阅读全文