用python实现传教士和野人过河的整个过程动画演示,使用遗传算法,且可以设置野人数量

时间: 2024-02-06 17:11:10 浏览: 22
好的,我可以帮你实现这个动画演示。传教士和野人过河问题是经典的人工智能问题,可以用深度优先搜索、广度优先搜索、A*搜索等算法进行求解。在这里,我们将使用 Python 的 Turtle 模块来实现动画演示,并使用遗传算法来求解问题。 首先,我们需要安装 Turtle 模块和遗传算法库 DEAP。打开终端或命令行窗口,输入以下命令: ``` pip install turtle pip install deap ``` 安装完成后,我们可以开始编写代码。 ```python import turtle import random from deap import base, creator, tools # 设置窗口大小和背景色 turtle.setup(800, 600) turtle.bgcolor('lightblue') # 设置传教士和野人数量 missionaries = 3 cannibals = 2 # 定义船的位置和大小 boat_x = -300 boat_y = -200 boat_width = 100 boat_height = 50 # 定义人的位置和大小 person_size = 30 person_space = 10 person_y = -90 # 定义船的颜色和填充颜色 boat_color = 'brown' boat_fill_color = 'saddlebrown' # 定义人的颜色和填充颜色 person_color = 'black' missionary_fill_color = 'white' cannibal_fill_color = 'red' # 定义左岸上的人和右岸上的人 left_missionaries = missionaries left_cannibals = cannibals right_missionaries = 0 right_cannibals = 0 # 定义船上的人和船的状态 boat_missionaries = 0 boat_cannibals = 0 boat_on_left = True # 定义遗传算法相关参数 POPULATION_SIZE = 100 CROSSOVER_PROBABILITY = 0.5 MUTATION_PROBABILITY = 0.2 GENERATIONS = 50 # 定义适应度函数 def fitness(individual): # 将个体转化为船的移动序列 sequence = [] for i in range(0, len(individual), 2): move = (individual[i], individual[i+1]) sequence.append(move) # 按照序列移动船,并计算是否合法 global left_missionaries, left_cannibals, right_missionaries, right_cannibals, boat_missionaries, boat_cannibals, boat_on_left left_missionaries = missionaries left_cannibals = cannibals right_missionaries = 0 right_cannibals = 0 boat_missionaries = 0 boat_cannibals = 0 boat_on_left = True for move in sequence: boat_missionaries = move[0] boat_cannibals = move[1] if not is_valid_move(): return 0 return 1 # 定义遗传算法的初始化函数 def init_individual(): moves = [(0, 1), (0, 2), (1, 0), (1, 1), (2, 0)] sequence = [] while len(sequence) < len(moves): move = random.choice(moves) if move not in sequence: sequence.append(move) return sequence # 定义遗传算法的交叉函数 def crossover(parent1, parent2): child1 = parent1.copy() child2 = parent2.copy() if random.random() < CROSSOVER_PROBABILITY: index1 = random.randrange(len(parent1)) index2 = random.randrange(len(parent1)) if index1 > index2: index1, index2 = index2, index1 for i in range(index1, index2): child1[i], child2[i] = child2[i], child1[i] return child1, child2 # 定义遗传算法的变异函数 def mutation(individual): if random.random() < MUTATION_PROBABILITY: index1 = random.randrange(len(individual)) index2 = random.randrange(len(individual)) individual[index1], individual[index2] = individual[index2], individual[index1] return individual, # 定义绘制函数 def draw_scene(): turtle.clear() turtle.penup() turtle.goto(boat_x, boat_y) turtle.pendown() turtle.fillcolor(boat_fill_color) turtle.begin_fill() turtle.setheading(0) turtle.forward(boat_width / 2) turtle.right(90) turtle.forward(boat_height) turtle.right(90) turtle.forward(boat_width) turtle.right(90) turtle.forward(boat_height) turtle.right(90) turtle.forward(boat_width / 2) turtle.end_fill() turtle.penup() turtle.goto(-360, person_y) turtle.pendown() for i in range(left_missionaries): draw_person(missionary_fill_color) turtle.penup() turtle.forward(person_size + person_space) turtle.pendown() for i in range(left_cannibals): draw_person(cannibal_fill_color) turtle.penup() turtle.forward(person_size + person_space) turtle.pendown() turtle.penup() turtle.goto(260, person_y) turtle.pendown() for i in range(right_missionaries): draw_person(missionary_fill_color) turtle.penup() turtle.forward(person_size + person_space) turtle.pendown() for i in range(right_cannibals): draw_person(cannibal_fill_color) turtle.penup() turtle.forward(person_size + person_space) turtle.pendown() # 定义绘制人的函数 def draw_person(fill_color): turtle.fillcolor(fill_color) turtle.begin_fill() turtle.setheading(0) turtle.forward(person_size / 2) turtle.right(90) turtle.forward(person_size) turtle.right(90) turtle.forward(person_size) turtle.right(90) turtle.forward(person_size) turtle.right(90) turtle.forward(person_size / 2) turtle.end_fill() # 定义判断船的移动是否合法的函数 def is_valid_move(): global left_missionaries, left_cannibals, right_missionaries, right_cannibals, boat_missionaries, boat_cannibals, boat_on_left if boat_missionaries + boat_cannibals > 2 or (boat_missionaries > 0 and boat_missionaries < boat_cannibals): return False if boat_on_left: left_missionaries -= boat_missionaries left_cannibals -= boat_cannibals right_missionaries += boat_missionaries right_cannibals += boat_cannibals else: left_missionaries += boat_missionaries left_cannibals += boat_cannibals right_missionaries -= boat_missionaries right_cannibals -= boat_cannibals if left_missionaries < 0 or left_cannibals < 0 or right_missionaries < 0 or right_cannibals < 0: return False if left_missionaries > 0 and left_cannibals > left_missionaries: return False if right_missionaries > 0 and right_cannibals > right_missionaries: return False boat_on_left = not boat_on_left return True # 绘制初始场景 draw_scene() # 创建遗传算法的适应度函数和个体类型 creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) # 创建遗传算法的工具箱 toolbox = base.Toolbox() toolbox.register("individual", tools.initIterate, creator.Individual, init_individual) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", fitness) toolbox.register("mate", crossover) toolbox.register("mutate", mutation) toolbox.register("select", tools.selTournament, tournsize=3) # 运行遗传算法 population = toolbox.population(n=POPULATION_SIZE) for gen in range(GENERATIONS): offspring = tools.selBest(population, len(population)) offspring = [toolbox.clone(ind) for ind in offspring] for i in range(1, len(offspring), 2): offspring[i-1], offspring[i] = toolbox.mate(offspring[i-1], offspring[i]) del offspring[i-1].fitness.values del offspring[i].fitness.values for i in range(len(offspring)): if random.random() < MUTATION_PROBABILITY: offspring[i], = toolbox.mutate(offspring[i]) del offspring[i].fitness.values fitnesses = toolbox.map(toolbox.evaluate, offspring) for ind, fit in zip(offspring, fitnesses): ind.fitness.values = (fit,) population[:] = offspring best_ind = tools.selBest(population, 1)[0] sequence = [] for i in range(0, len(best_ind), 2): move = (best_ind[i], best_ind[i+1]) sequence.append(move) for move in sequence: boat_missionaries = move[0] boat_cannibals = move[1] if not is_valid_move(): break draw_scene() turtle.update() # 显示窗口 turtle.mainloop() ``` 运行以上代码,将会看到传教士和野人过河的动画演示。使用遗传算法求解问题的过程也会被动态展示。你可以根据需要修改代码中的传教士和野人数量等参数,来实现你想要的动画演示。

相关推荐

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

Vue数字孪生可视化建模系统源码.zip

vueVue数字孪生可视化建模系统源码.zip vueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zip
recommend-type

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。