用python实现传教士和野人过河的整个过程动画演示,使用遗传算法,且可以设置野人数量
时间: 2024-02-06 13:11:10 浏览: 150
传教士与野人python
好的,我可以帮你实现这个动画演示。传教士和野人过河问题是经典的人工智能问题,可以用深度优先搜索、广度优先搜索、A*搜索等算法进行求解。在这里,我们将使用 Python 的 Turtle 模块来实现动画演示,并使用遗传算法来求解问题。
首先,我们需要安装 Turtle 模块和遗传算法库 DEAP。打开终端或命令行窗口,输入以下命令:
```
pip install turtle
pip install deap
```
安装完成后,我们可以开始编写代码。
```python
import turtle
import random
from deap import base, creator, tools
# 设置窗口大小和背景色
turtle.setup(800, 600)
turtle.bgcolor('lightblue')
# 设置传教士和野人数量
missionaries = 3
cannibals = 2
# 定义船的位置和大小
boat_x = -300
boat_y = -200
boat_width = 100
boat_height = 50
# 定义人的位置和大小
person_size = 30
person_space = 10
person_y = -90
# 定义船的颜色和填充颜色
boat_color = 'brown'
boat_fill_color = 'saddlebrown'
# 定义人的颜色和填充颜色
person_color = 'black'
missionary_fill_color = 'white'
cannibal_fill_color = 'red'
# 定义左岸上的人和右岸上的人
left_missionaries = missionaries
left_cannibals = cannibals
right_missionaries = 0
right_cannibals = 0
# 定义船上的人和船的状态
boat_missionaries = 0
boat_cannibals = 0
boat_on_left = True
# 定义遗传算法相关参数
POPULATION_SIZE = 100
CROSSOVER_PROBABILITY = 0.5
MUTATION_PROBABILITY = 0.2
GENERATIONS = 50
# 定义适应度函数
def fitness(individual):
# 将个体转化为船的移动序列
sequence = []
for i in range(0, len(individual), 2):
move = (individual[i], individual[i+1])
sequence.append(move)
# 按照序列移动船,并计算是否合法
global left_missionaries, left_cannibals, right_missionaries, right_cannibals, boat_missionaries, boat_cannibals, boat_on_left
left_missionaries = missionaries
left_cannibals = cannibals
right_missionaries = 0
right_cannibals = 0
boat_missionaries = 0
boat_cannibals = 0
boat_on_left = True
for move in sequence:
boat_missionaries = move[0]
boat_cannibals = move[1]
if not is_valid_move():
return 0
return 1
# 定义遗传算法的初始化函数
def init_individual():
moves = [(0, 1), (0, 2), (1, 0), (1, 1), (2, 0)]
sequence = []
while len(sequence) < len(moves):
move = random.choice(moves)
if move not in sequence:
sequence.append(move)
return sequence
# 定义遗传算法的交叉函数
def crossover(parent1, parent2):
child1 = parent1.copy()
child2 = parent2.copy()
if random.random() < CROSSOVER_PROBABILITY:
index1 = random.randrange(len(parent1))
index2 = random.randrange(len(parent1))
if index1 > index2:
index1, index2 = index2, index1
for i in range(index1, index2):
child1[i], child2[i] = child2[i], child1[i]
return child1, child2
# 定义遗传算法的变异函数
def mutation(individual):
if random.random() < MUTATION_PROBABILITY:
index1 = random.randrange(len(individual))
index2 = random.randrange(len(individual))
individual[index1], individual[index2] = individual[index2], individual[index1]
return individual,
# 定义绘制函数
def draw_scene():
turtle.clear()
turtle.penup()
turtle.goto(boat_x, boat_y)
turtle.pendown()
turtle.fillcolor(boat_fill_color)
turtle.begin_fill()
turtle.setheading(0)
turtle.forward(boat_width / 2)
turtle.right(90)
turtle.forward(boat_height)
turtle.right(90)
turtle.forward(boat_width)
turtle.right(90)
turtle.forward(boat_height)
turtle.right(90)
turtle.forward(boat_width / 2)
turtle.end_fill()
turtle.penup()
turtle.goto(-360, person_y)
turtle.pendown()
for i in range(left_missionaries):
draw_person(missionary_fill_color)
turtle.penup()
turtle.forward(person_size + person_space)
turtle.pendown()
for i in range(left_cannibals):
draw_person(cannibal_fill_color)
turtle.penup()
turtle.forward(person_size + person_space)
turtle.pendown()
turtle.penup()
turtle.goto(260, person_y)
turtle.pendown()
for i in range(right_missionaries):
draw_person(missionary_fill_color)
turtle.penup()
turtle.forward(person_size + person_space)
turtle.pendown()
for i in range(right_cannibals):
draw_person(cannibal_fill_color)
turtle.penup()
turtle.forward(person_size + person_space)
turtle.pendown()
# 定义绘制人的函数
def draw_person(fill_color):
turtle.fillcolor(fill_color)
turtle.begin_fill()
turtle.setheading(0)
turtle.forward(person_size / 2)
turtle.right(90)
turtle.forward(person_size)
turtle.right(90)
turtle.forward(person_size)
turtle.right(90)
turtle.forward(person_size)
turtle.right(90)
turtle.forward(person_size / 2)
turtle.end_fill()
# 定义判断船的移动是否合法的函数
def is_valid_move():
global left_missionaries, left_cannibals, right_missionaries, right_cannibals, boat_missionaries, boat_cannibals, boat_on_left
if boat_missionaries + boat_cannibals > 2 or (boat_missionaries > 0 and boat_missionaries < boat_cannibals):
return False
if boat_on_left:
left_missionaries -= boat_missionaries
left_cannibals -= boat_cannibals
right_missionaries += boat_missionaries
right_cannibals += boat_cannibals
else:
left_missionaries += boat_missionaries
left_cannibals += boat_cannibals
right_missionaries -= boat_missionaries
right_cannibals -= boat_cannibals
if left_missionaries < 0 or left_cannibals < 0 or right_missionaries < 0 or right_cannibals < 0:
return False
if left_missionaries > 0 and left_cannibals > left_missionaries:
return False
if right_missionaries > 0 and right_cannibals > right_missionaries:
return False
boat_on_left = not boat_on_left
return True
# 绘制初始场景
draw_scene()
# 创建遗传算法的适应度函数和个体类型
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
# 创建遗传算法的工具箱
toolbox = base.Toolbox()
toolbox.register("individual", tools.initIterate, creator.Individual, init_individual)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", fitness)
toolbox.register("mate", crossover)
toolbox.register("mutate", mutation)
toolbox.register("select", tools.selTournament, tournsize=3)
# 运行遗传算法
population = toolbox.population(n=POPULATION_SIZE)
for gen in range(GENERATIONS):
offspring = tools.selBest(population, len(population))
offspring = [toolbox.clone(ind) for ind in offspring]
for i in range(1, len(offspring), 2):
offspring[i-1], offspring[i] = toolbox.mate(offspring[i-1], offspring[i])
del offspring[i-1].fitness.values
del offspring[i].fitness.values
for i in range(len(offspring)):
if random.random() < MUTATION_PROBABILITY:
offspring[i], = toolbox.mutate(offspring[i])
del offspring[i].fitness.values
fitnesses = toolbox.map(toolbox.evaluate, offspring)
for ind, fit in zip(offspring, fitnesses):
ind.fitness.values = (fit,)
population[:] = offspring
best_ind = tools.selBest(population, 1)[0]
sequence = []
for i in range(0, len(best_ind), 2):
move = (best_ind[i], best_ind[i+1])
sequence.append(move)
for move in sequence:
boat_missionaries = move[0]
boat_cannibals = move[1]
if not is_valid_move():
break
draw_scene()
turtle.update()
# 显示窗口
turtle.mainloop()
```
运行以上代码,将会看到传教士和野人过河的动画演示。使用遗传算法求解问题的过程也会被动态展示。你可以根据需要修改代码中的传教士和野人数量等参数,来实现你想要的动画演示。
阅读全文