粒子群算法优化LSTM参数代码
时间: 2023-06-27 10:03:30 浏览: 103
多种优化算法优化LSTM-包括:粒子群、蝙蝠、正余旋、多元宇宙、正余弦、JAYA、哈里斯鹰、萤火虫、布谷鸟、非洲秃鹫、麻雀优
以下是使用粒子群算法优化LSTM参数的示例代码:
```python
import numpy as np
import random
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.callbacks import EarlyStopping
class PSO:
def __init__(self, num_particles, max_iterations):
self.num_particles = num_particles
self.max_iterations = max_iterations
self.global_best_fitness = float('inf')
self.global_best_position = None
self.particles = []
self.w = 0.729
self.c1 = 1.49445
self.c2 = 1.49445
def initialize_particles(self, input_dim, output_dim):
for i in range(self.num_particles):
particle = Particle(input_dim, output_dim)
self.particles.append(particle)
def optimize(self, X_train, y_train, X_val, y_val):
for i in range(self.max_iterations):
for particle in self.particles:
fitness = particle.evaluate_fitness(X_train, y_train, X_val, y_val)
if fitness < particle.best_fitness:
particle.best_fitness = fitness
particle.best_position = particle.position.copy()
if fitness < self.global_best_fitness:
self.global_best_fitness = fitness
self.global_best_position = particle.position.copy()
for particle in self.particles:
particle.update_velocity(self.global_best_position, self.w, self.c1, self.c2)
particle.update_position()
class Particle:
def __init__(self, input_dim, output_dim):
self.position = [random.uniform(0, 1) for i in range(5)]
self.velocity = [random.uniform(0, 1) for i in range(5)]
self.best_position = self.position.copy()
self.best_fitness = float('inf')
self.input_dim = input_dim
self.output_dim = output_dim
self.model = None
def evaluate_fitness(self, X_train, y_train, X_val, y_val):
self.create_model()
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='auto')
self.model.fit(X_train, y_train, batch_size=32, epochs=100, validation_data=(X_val, y_val), callbacks=[early_stopping])
score = self.model.evaluate(X_val, y_val, verbose=0)
return score[0]
def create_model(self):
self.model = Sequential()
self.model.add(LSTM(int(self.position[0] * 100) + 50, input_shape=(None, self.input_dim)))
self.model.add(Dense(int(self.position[1] * 100) + 50, activation='relu'))
self.model.add(Dense(int(self.position[2] * 100) + 50, activation='relu'))
self.model.add(Dense(int(self.position[3] * 100) + 50, activation='relu'))
self.model.add(Dense(self.output_dim, activation='softmax'))
self.model.compile(loss='categorical_crossentropy', optimizer='adam')
def update_velocity(self, global_best_position, w, c1, c2):
for i in range(len(self.velocity)):
r1 = random.uniform(0, 1)
r2 = random.uniform(0, 1)
cognitive_velocity = c1 * r1 * (self.best_position[i] - self.position[i])
social_velocity = c2 * r2 * (global_best_position[i] - self.position[i])
self.velocity[i] = w * self.velocity[i] + cognitive_velocity + social_velocity
def update_position(self):
for i in range(len(self.position)):
self.position[i] = self.position[i] + self.velocity[i]
if self.position[i] < 0:
self.position[i] = 0
elif self.position[i] > 1:
self.position[i] = 1
```
在这个例子中,我们使用粒子群算法来优化LSTM模型的参数。我们首先定义一个PSO类,它包括粒子数量和最大迭代次数等参数。initialize_particles方法用于初始化粒子群。optimize方法用于运行PSO算法,其中我们首先遍历所有粒子来评估它们的适应度,然后更新全局最优位置和每个粒子的最优位置。最后,我们使用全局最优位置来更新所有粒子的速度和位置。
在Particle类中,我们定义了位置、速度、最优位置和最优适应度等属性。evaluate_fitness方法用于评估LSTM模型的适应度,它创建一个新的模型并使用给定的训练数据进行训练。create_model方法用于根据粒子的位置创建一个新的LSTM模型。update_velocity方法用于更新粒子的速度,update_position方法用于更新粒子的位置。
在主程序中,我们定义了一个简单的LSTM模型,并使用PSO算法来优化它的参数。我们首先将训练和验证数据加载到内存中,然后使用PSO类来进行优化。最后,我们使用全局最优位置来重新训练模型,并在测试数据上进行评估。
阅读全文