matlab 已知正交legendre多项式函数 编制m函数 [lp
时间: 2024-03-20 20:38:57 浏览: 77
下面是一个简单的 Matlab m 文件,用于计算正交的 Legendre 多项式函数:
```matlab
function [ lp ] = legendre_poly( n )
% 计算正交的 Legendre 多项式函数的值
% 输入:
% n: 多项式的次数
% 输出:
% lp: 长度为 n+1 的向量,包含从 0 到 n 阶多项式的值
lp = zeros(1, n+1);
lp(1) = 1;
if n > 0
lp(2) = x;
for k = 2:n
lp(k+1) = ((2*k-1)*x*lp(k)-(k-1)*lp(k-1))/k;
end
end
end
```
在这个 m 文件中,我们使用了递推公式来计算每个阶数的 Legendre 多项式函数。我们首先初始化 $P_0(x) = 1$,然后计算 $P_1(x) = x$。接下来,我们使用递推公式 $P_{k+1}(x) = \frac{(2k+1)xP_k(x) - kP_{k-1}(x)}{k+1}$ 来计算更高阶的多项式函数。
你可以通过调用 `legendre_poly(n)` 函数来计算从 $0$ 到 $n$ 阶的 Legendre 多项式函数。
相关问题
matlab 己知正交 Legendre 多项式函数有如下的递推关系p1(x)=1 p2(x)=x;(n+1)pn+1(x)=(2n+1)xpn(x)-npn-1(x) 编制m函数 [Ip, Gram]=fun_ legendre_32(n).m 输入一个参数n,没有输入参数时报错。
您好!根据您的要求,我已经编写了一个 MATLAB 函数 `fun_legendre_32`,实现正交 Legendre 多项式函数的递推关系,并返回第 n 阶 Legendre 多项式函数及其 Gram 矩阵。函数代码如下:
```matlab
function [Ip, Gram] = fun_legendre_32(n)
% FUN_LEGENDRE_32: Compute the n-th order Legendre polynomial function and its Gram matrix
% Syntax: [Ip, Gram] = fun_legendre_32(n)
% Inputs:
% - n: The order of Legendre polynomial function
% Outputs:
% - Ip: A function handle of the n-th order Legendre polynomial function
% - Gram: The Gram matrix of the first n+1 Legendre polynomial functions
if nargin < 1
error('Please input the order n of Legendre polynomial function!');
end
% Initialize the first two Legendre polynomial functions
p0 = @(x) 1;
p1 = @(x) x;
% Initialize the Gram matrix
Gram = zeros(n+1);
% Compute the first n+1 Legendre polynomial functions and their Gram matrix
Gram(1,1) = integral(@(x) p0(x).^2, -1, 1);
Gram(2,1) = integral(@(x) p0(x).*p1(x), -1, 1);
Gram(1,2) = Gram(2,1);
Gram(2,2) = integral(@(x) p1(x).^2, -1, 1);
for k = 2:n
pk = @(x) ((2*k-1)*x.*p1(x)-(k-1)*p0(x))/k;
Gram(k+1,1) = integral(@(x) p0(x).*pk(x), -1, 1);
Gram(1,k+1) = Gram(k+1,1);
for j = 2:k
pj = @(x) ((2*j-1)*x.*p1(x)-(j-1)*p0(x))/j;
Gram(k+1,j) = integral(@(x) pj(x).*pk(x), -1, 1);
Gram(j,k+1) = Gram(k+1,j);
end
Gram(k+1,k+1) = integral(@(x) pk(x).^2, -1, 1);
p0 = p1;
p1 = pk;
end
% Return the function handle of the n-th order Legendre polynomial function
Ip = p1;
end
```
该函数会检查输入参数是否存在,如果没有输入参数则会报错。函数通过递推公式计算前 n+1 阶 Legendre 多项式函数及其 Gram 矩阵,并返回第 n 阶 Legendre 多项式函数的函数句柄 `Ip` 和 Gram 矩阵 `Gram`。您可以直接调用该函数,并传入所需的阶数 n,即可得到对应的正交 Legendre 多项式函数。
己知正交 Legendre 多项式函数有如下的递推关系p1(x)=1 p2(x)=x;(n+1)p(n+1)(x)=(2n+1)xp(n)(x)-np(n-1)(x) 编制m函数 [Ip, Gram]=fun_ legendre_32(n).m 输入一个参数n,没有输入参数时报错。
您好!根据您的要求,我已经编写了一个 MATLAB 函数 `fun_legendre_32`,实现正交 Legendre 多项式函数的递推关系,并返回第 n 阶 Legendre 多项式函数及其 Gram 矩阵。函数代码如下:
```matlab
function [Ip, Gram] = fun_legendre_32(n)
% FUN_LEGENDRE_32: Compute the n-th order Legendre polynomial function and its Gram matrix
% Syntax: [Ip, Gram] = fun_legendre_32(n)
% Inputs:
% - n: The order of Legendre polynomial function
% Outputs:
% - Ip: A function handle of the n-th order Legendre polynomial function
% - Gram: The Gram matrix of the first n+1 Legendre polynomial functions
if nargin < 1
error('Please input the order n of Legendre polynomial function!');
end
% Initialize the first two Legendre polynomial functions
p0 = @(x) 1;
p1 = @(x) x;
% Initialize the Gram matrix
Gram = zeros(n+1);
% Compute the first n+1 Legendre polynomial functions and their Gram matrix
Gram(1,1) = integral(@(x) p0(x).^2, -1, 1);
Gram(2,1) = integral(@(x) p0(x).*p1(x), -1, 1);
Gram(1,2) = Gram(2,1);
Gram(2,2) = integral(@(x) p1(x).^2, -1, 1);
for k = 2:n
pk = @(x) ((2*k-1)*x.*p1(x)-(k-1)*p0(x))/k;
Gram(k+1,1) = integral(@(x) p0(x).*pk(x), -1, 1);
Gram(1,k+1) = Gram(k+1,1);
for j = 2:k
pj = @(x) ((2*j-1)*x.*p1(x)-(j-1)*p0(x))/j;
Gram(k+1,j) = integral(@(x) pj(x).*pk(x), -1, 1);
Gram(j,k+1) = Gram(k+1,j);
end
Gram(k+1,k+1) = integral(@(x) pk(x).^2, -1, 1);
p0 = p1;
p1 = pk;
end
% Return the function handle of the n-th order Legendre polynomial function
Ip = p1;
end
```
该函数会检查输入参数是否存在,如果没有输入参数则会报错。函数通过递推公式计算前 n+1 阶 Legendre 多项式函数及其 Gram 矩阵,并返回第 n 阶 Legendre 多项式函数的函数句柄 `Ip` 和 Gram 矩阵 `Gram`。您可以直接调用该函数,并传入所需的阶数 n,即可得到对应的正交 Legendre 多项式函数。
阅读全文