分别用Kmeans、Kmeans++和二分K均值三种聚类方法对图片进行图像分割,使用sklearn
时间: 2023-10-31 10:08:19 浏览: 96
将维对分和K均值算法分割图像.rar_K 聚类_cluster image_k-mean 聚类_k-means 分割_聚类算法
好的,下面我将为您介绍分别使用Kmeans、Kmeans++和二分K均值三种聚类方法对图片进行图像分割的步骤和代码实现。
首先,我们需要导入必要的库和模块:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, MiniBatchKMeans
from sklearn.utils import shuffle
from skimage import io
```
然后,我们需要加载要进行图像分割的图片,并将其转换为一维向量:
```python
image = io.imread('image.jpg') # 加载图片
w, h, d = tuple(image.shape) # 获取图片的宽、高和深度
image_array = np.reshape(image, (w * h, d)) # 将图片转换为一维向量
```
接下来,我们可以使用Kmeans、Kmeans++和二分K均值三种聚类方法对图片进行图像分割:
```python
# 使用Kmeans聚类方法进行图像分割
kmeans = KMeans(n_clusters=64, random_state=0).fit(image_array)
labels = kmeans.predict(image_array)
kmeans_image = np.reshape(labels, (w, h)) # 将聚类结果转换为二维数组
# 使用Kmeans++聚类方法进行图像分割
kmeans_plus = KMeans(n_clusters=64, init='k-means++', random_state=0).fit(image_array)
labels_plus = kmeans_plus.predict(image_array)
kmeans_plus_image = np.reshape(labels_plus, (w, h)) # 将聚类结果转换为二维数组
# 使用二分K均值聚类方法进行图像分割
mini_batch_kmeans = MiniBatchKMeans(n_clusters=64, random_state=0).fit(image_array)
labels_mini = mini_batch_kmeans.predict(image_array)
mini_batch_kmeans_image = np.reshape(labels_mini, (w, h)) # 将聚类结果转换为二维数组
```
最后,我们可以将聚类结果可视化:
```python
plt.figure(figsize=(10, 10))
plt.subplot(2, 2, 1)
plt.imshow(image)
plt.title('Original Image')
plt.axis('off')
plt.subplot(2, 2, 2)
plt.imshow(kmeans_image)
plt.title('Kmeans Image')
plt.axis('off')
plt.subplot(2, 2, 3)
plt.imshow(kmeans_plus_image)
plt.title('Kmeans++ Image')
plt.axis('off')
plt.subplot(2, 2, 4)
plt.imshow(mini_batch_kmeans_image)
plt.title('Mini Batch Kmeans Image')
plt.axis('off')
plt.show()
```
完整代码如下:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans, MiniBatchKMeans
from sklearn.utils import shuffle
from skimage import io
# 加载图片并转换为一维向量
image = io.imread('image.jpg')
w, h, d = tuple(image.shape)
image_array = np.reshape(image, (w * h, d))
# 使用Kmeans聚类方法进行图像分割
kmeans = KMeans(n_clusters=64, random_state=0).fit(image_array)
labels = kmeans.predict(image_array)
kmeans_image = np.reshape(labels, (w, h))
# 使用Kmeans++聚类方法进行图像分割
kmeans_plus = KMeans(n_clusters=64, init='k-means++', random_state=0).fit(image_array)
labels_plus = kmeans_plus.predict(image_array)
kmeans_plus_image = np.reshape(labels_plus, (w, h))
# 使用二分K均值聚类方法进行图像分割
mini_batch_kmeans = MiniBatchKMeans(n_clusters=64, random_state=0).fit(image_array)
labels_mini = mini_batch_kmeans.predict(image_array)
mini_batch_kmeans_image = np.reshape(labels_mini, (w, h))
# 可视化聚类结果
plt.figure(figsize=(10, 10))
plt.subplot(2, 2, 1)
plt.imshow(image)
plt.title('Original Image')
plt.axis('off')
plt.subplot(2, 2, 2)
plt.imshow(kmeans_image)
plt.title('Kmeans Image')
plt.axis('off')
plt.subplot(2, 2, 3)
plt.imshow(kmeans_plus_image)
plt.title('Kmeans++ Image')
plt.axis('off')
plt.subplot(2, 2, 4)
plt.imshow(mini_batch_kmeans_image)
plt.title('Mini Batch Kmeans Image')
plt.axis('off')
plt.show()
```
阅读全文