‘x0’ ‘x1’ ‘x2’ ‘x3’ ‘x4’ ‘x5’ ‘x6’ ‘x7’ ‘x8’ 这个怎么再转成字符串?

时间: 2024-01-10 19:20:28 浏览: 25
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8" 可以转换成字符串的方法有很多,以下是其中两种方法: 1. 使用字符串拼接符号“+”将它们连接起来: ``` std::string str = "x0" + "x1" + "x2" + "x3" + "x4" + "x5" + "x6" + "x7" + "x8"; ``` 2. 使用stringstream类: ``` std::stringstream ss; ss << "x0" << "x1" << "x2" << "x3" << "x4" << "x5" << "x6" << "x7" << "x8"; std::string str = ss.str(); ```
相关问题

我定义的计算目标函数的函数为,def quadratic(bd_X, bd_Y, x3, x4): x1 = 0.25*(((DX*(bd_X-1))**2 + (DY*(bd_Y-1))**2)**0.5+ ((DX*(51-bd_X))**2 + (DY*(bd_Y-1))**2)**0.5 + ((DX*(bd_X-1))**2 + (DY*(51-bd_Y))**2)**0.5 + ((DX*(51-bd_X))**2 + (DY*(51-bd_Y))**2)**0.5) x2 = (((bd_X-mbjx)**2 + (bd_Y-mbjy)**2 )**0.5)*DX x5 = train_optimize2[4] x6 = train_optimize2[5] x7 = train_optimize2[6] x8 = train_optimize2[7] x9 = train_optimize2[8] x10 = train_optimize2[9] x11 = train_optimize2[10] x12 = train_optimize2[11] x13 = train_optimize2[12] x14 = train_optimize2[13] x15 = train_optimize2[14] x16 = train_optimize2[15] x17 = train_optimize2[16] x18 = train_optimize2[17] x19 = train_optimize2[18] with open('regressor_model.pkl', 'rb') as f: model = pickle.load(f) x_train = np.array([[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14,x15,x16,x17,x18,x19]]) y_predict = model.predict(x_train) Y = y_predict return -Y

好的,根据您给出的代码,可以看出目标函数的计算涉及到一些外部的变量和模型,这里简单介绍一下如何将其与 CMA-ES 优化器结合起来。 首先,我们需要将 `quadratic()` 函数转换为只接受一个参数(即解向量),并返回一个标量值(即目标函数值)的形式。其次,由于 `quadratic()` 函数的计算需要使用一些外部的变量和模型,我们可以使用 Python 的函数闭包(closure)特性来包装 `quadratic()` 函数,以便在闭包内访问这些外部变量和模型。 下面是一个示例代码,其中假设您已经定义好了 `DX`、`DY`、`train_optimize2`、`mbjx` 和 `mbjy` 等变量: ```python import numpy as np import cma import pickle # 定义目标函数 def make_objective(DX, DY, train_optimize2, mbjx, mbjy): def objective(x): bd_X, bd_Y, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19 = x x1 = 0.25*(((DX*(bd_X-1))**2 + (DY*(bd_Y-1))**2)**0.5+ ((DX*(51-bd_X))**2 + (DY*(bd_Y-1))**2)**0.5 + ((DX*(bd_X-1))**2 + (DY*(51-bd_Y))**2)**0.5 + ((DX*(51-bd_X))**2 + (DY*(51-bd_Y))**2)**0.5) x2 = (((bd_X-mbjx)**2 + (bd_Y-mbjy)**2 )**0.5)*DX with open('regressor_model.pkl', 'rb') as f: model = pickle.load(f) x_train = np.array([[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19]]) y_predict = model.predict(x_train) Y = y_predict return -Y return objective # 定义变量边界 bounds = [[1, 51], [1, 51], [-5, 5], [-5, 5], -np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf] # 初始化 CMA-ES 优化器 objective = make_objective(DX, DY, train_optimize2, mbjx, mbjy) x0 = np.mean(bounds, axis=1) sigma0 = 0.5 optimizer = cma.CMAEvolutionStrategy(x0, sigma0, {'bounds': bounds}) # 运行优化器 while not optimizer.stop(): solutions = optimizer.ask() # 获取一组解向量 fitness_list = [objective(x) for x in solutions] # 计算目标函数值 optimizer.tell(solutions, fitness_list) # 更新优化器内部状态 best_solution = solutions[np.argmin(fitness_list)] # 获取当前最优解 best_fitness = np.min(fitness_list) # 获取当前最优解的目标函数值 print(f'Best solution: {best_solution}, Best fitness: {best_fitness}') ``` 在上面的代码中,我们定义了一个 `make_objective()` 函数,用于创建一个闭包,其中包含 `quadratic()` 函数及其依赖的外部变量和模型。然后,我们使用 `make_objective()` 函数创建一个目标函数 `objective`,并将其传递给 CMA-ES 优化器进行优化。在每一轮迭代中,我们打印当前最优解和最优解的目标函数值,以便进行跟踪和分析。

【问题描述】 编写一个程序实现两个一元多项式相乘。 【输入形式】 首先输入第一个多项式中系数不为0的项的个数,然后在新的一行上输入以空格分隔的整数,代表一个多项式,且该多项式中各项的系数均为0或正整数,最高幂次不超过50。对于多项式 anxn + an-1xn-1+ ... + a1x1 + a0x0 (n<50)的输入方法如下: an n an-1 n-1 ... a1 1 a0 0 即相邻两个整数分别表示表达式中一项的系数和指数。在输入中只出现系数不为0的项。 按照上述方式再输入第二个多项式。 【输出形式】 将运算结果输出到屏幕。将系数不为0的项按指数从高到低的顺序输出,每次输出其系数和指数,均以一个空格分隔。最后要求换行。 【样例输入】 5 10 8 2 6 7 3 5 1 18 0 3 3 7 5 2 8 1 【样例输出】 30 15 6 13 71 10 80 9 25 8 70 7 35 5 56 4 25 3 130 2 144 1 【样例说明】 输入的两行分别代表如下表达式: 10x8 + 2x6 + 7x3 + 5x + 18 3x7 + 5x2 + 8x 相乘结果为: 30x15 + 6x13 + 71x10 + 80x9 + 25x8 + 70x7 + 35x5 + 56x4 + 25x3 + 130x2 + 144x。用c语言编写

```c #include<stdio.h> #include<string.h> #define MAX_N 55 struct Poly { int a[MAX_N]; }A, B, C; int main() { int m, n; memset(A.a, 0, sizeof(A.a)); memset(B.a, 0, sizeof(B.a)); memset(C.a, 0, sizeof(C.a)); scanf("%d", &m); for (int i = 0; i < m; i++) { int coe, exp; scanf("%d %d", &coe, &exp); A.a[exp] = coe; } scanf("%d", &n); for (int i = 0; i < n; i++) { int coe, exp; scanf("%d %d", &coe, &exp); B.a[exp] = coe; } for (int i = 0; i < MAX_N; i++) { for (int j = 0; j < MAX_N; j++) { C.a[i + j] += A.a[i] * B.a[j]; } } int flag = 0; for (int i = MAX_N - 1; i >= 0; i--) { if (C.a[i]) { if (flag) printf(" "); printf("%d %d", C.a[i], i); flag = 1; } } printf("\n"); return 0; } ```

相关推荐

用c++完成步骤一.设计八数码格局的隐式存储的节点结构: 将表示棋局的状态用如下向量表示: A=(X0,X1 ,X2 ,X3 ,X4 ,X5 , X6 , X7 ,X8) 约束条件: XiÎ{0,1 ,2,3,4,5,6,7,8} Xi¹Xj,当i¹j时。 初始状态: S0 =(0,1,3,2,4,8,7,6,5) 目标状态: Sg =(0,1,2,3,4,5,6,7,8) 步骤二. 采用广度优先、深度优先搜索算法实现搜索。 步骤三. 设计启发函数,启发函数可参考如下定义方法: (1)启发函数h(n)定义为:h(n)=w(n) 其中,w(n)代表n的格局域目标节点格局相比,位置不符的将牌数目。 (2)估计函数f(n)定义为:f(n)=d(n)+w(n) 其中,d(n)表示节点深度,w(n)意义与前同。 (3)对w(n)进一步改进:令h(n)=P(n) 其中,p(n)是n格局中每个将牌离家(在sg中的位置)的最短距离。 (4)另一种改进:h(n)=p(n)+3s(n) 其中, s(n)是这样计算的:沿着周围哪些非中心方格上依顺时针方向检查n格局上的每一个将牌,如果其后紧跟着的将牌正好是目标格局中该将牌的后续者,则该将牌得0分,否则得2分;在正中方格上有将牌得1分,否则得0分 步骤四.选择并设计搜索算法。 (1)使用全局择优的树式搜索算法,即启发式的宽度优先搜索算法,但要考虑去掉已生成的格局。 (2)使用局部择优的树式搜索算法,即启发式的深度优先搜索算法,但要考虑去掉已生成的格局。 (3)使用A算法或A*算法,即图的启发式搜索算法,比上述两个算法略有难度。 步骤五 设计输出 动态演示格局的变化情况,即数码的移动情况。 步骤六 编写代码,调试程序。

Unable to handle kernel paging request at virtual address 0000000200005401 [ 21.757454] Mem abort info: [ 21.760240] ESR = 0x96000004 [ 21.763286] Exception class = DABT (current EL), IL = 32 bits [ 21.769199] SET = 0, FnV = 0 [ 21.772245] EA = 0, S1PTW = 0 [ 21.775378] Data abort info: [ 21.778250] ISV = 0, ISS = 0x00000004 [ 21.782078] CM = 0, WnR = 0 [ 21.785038] [0000000200005401] user address but active_mm is swapper [ 21.791385] Internal error: Oops: 96000004 [#2] PREEMPT SMP [ 21.796951] Modules linked in: [ 21.800002] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G S D 4.19.0-4.19.9-x100-0707+ #30 [ 21.808956] Hardware name: E2000Q TESTC DDR4 Board (DT) [ 21.814175] pstate: 20000085 (nzCv daIf -PAN -UAO) [ 21.818963] pc : __kmalloc+0xe8/0x248 [ 21.822618] lr : __kmalloc+0x48/0x248 [ 21.826272] sp : ffff000008003c50 [ 21.829580] x29: ffff000008003c50 x28: 0000000000000001 [ 21.834888] x27: ffff000009911158 x26: ffff000009c267cb [ 21.840196] x25: 0000000000000000 x24: 0000000000000001 [ 21.845504] x23: 0000000000016e00 x22: ffff000008733b0c [ 21.850812] x21: 0000000000480020 x20: 0000000200005401 [ 21.856120] x19: ffff8020ff803800 x18: ffffffffffffffff [ 21.861429] x17: 0000000000001800 x16: 0000000000000000 [ 21.866737] x15: ffff000009b696c8 x14: 0720072007200720 [ 21.872044] x13: 0720072007200720 x12: 0720072007200720 [ 21.877353] x11: 0720072007200720 x10: 0000000000000040 [ 21.882660] x9 : ffff000009b84f20 x8 : ffff8020ff400248 [ 21.887968] x7 : ffff8020ff4002b8 x6 : 0000000000000048 [ 21.893276] x5 : 00008020f6425000 x4 : 0000000000000000 [ 21.898584] x3 : ffff7e0083d67e00 x2 : 00008020f6425000 [ 21.903892] x1 : 0000000000000000 x0 : 0000000000000001 [ 21.909201] Process swapper/0 (pid: 1, stack limit = 0x(____ptrval____)) [ 21.915895] Call trace: [ 21.918335] __kmalloc+0xe8/0x248 [ 21.921646] __tty_buffer_request_room+0x7c/0x148 [ 21.926344] __tty_insert_flip_char+0x28/0x80 [ 21.930696] uart_insert_char+0xd4/0x140 [ 21.934613] pl011_fifo_to_tty+0x88/0x1b8 [ 21.938616] pl011_int+0x340/0x488分析一下这段内核报错

最新推荐

recommend-type

“推荐系统”相关资源推荐

推荐了国内外对推荐系统的讲解相关资源
recommend-type

电容式触摸按键设计参考

"电容式触摸按键设计参考 - 触摸感应按键设计指南" 本文档是Infineon Technologies的Application Note AN64846,主要针对电容式触摸感应(CAPSENSE™)技术,旨在为初次接触CAPSENSE™解决方案的硬件设计师提供指导。文档覆盖了从基础技术理解到实际设计考虑的多个方面,包括电路图设计、布局以及电磁干扰(EMI)的管理。此外,它还帮助用户选择适合自己应用的合适设备,并提供了CAPSENSE™设计的相关资源。 文档的目标受众是使用或对使用CAPSENSE™设备感兴趣的用户。CAPSENSE™技术是一种基于电容原理的触控技术,通过检测人体与传感器间的电容变化来识别触摸事件,常用于无物理按键的现代电子设备中,如智能手机、家电和工业控制面板。 在文档中,读者将了解到CAPSENSE™技术的基本工作原理,以及在设计过程中需要注意的关键因素。例如,设计时要考虑传感器的灵敏度、噪声抑制、抗干扰能力,以及如何优化电路布局以减少EMI的影响。同时,文档还涵盖了器件选择的指导,帮助用户根据应用需求挑选合适的CAPSENSE™芯片。 此外,为了辅助设计,Infineon提供了专门针对CAPSENSE™设备家族的设计指南,这些指南通常包含更详细的技术规格、设计实例和实用工具。对于寻求代码示例的开发者,可以通过Infineon的在线代码示例网页获取不断更新的PSoC™代码库,也可以通过视频培训库深入学习。 文档的目录通常会包含各个主题的章节,如理论介绍、设计流程、器件选型、硬件实施、软件配置以及故障排查等,这些章节将逐步引导读者完成一个完整的CAPSENSE™触摸按键设计项目。 通过这份指南,工程师不仅可以掌握CAPSENSE™技术的基础,还能获得实践经验,从而有效地开发出稳定、可靠的触摸感应按键系统。对于那些希望提升产品用户体验,采用先进触控技术的设计师来说,这是一份非常有价值的参考资料。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题

![MATLAB函数调用中的调试技巧大揭秘,快速定位并解决函数调用问题](https://ucc.alicdn.com/pic/developer-ecology/ovk2h427k2sfg_f0d4104ac212436a93f2cc1524c4512e.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MATLAB函数调用的基本原理** MATLAB函数调用是通过`function`关键字定义的,其语法为: ```matlab function [output1, output2, ..., outputN] = function_na
recommend-type

LDMIA r0!,{r4 - r11}

LDMIA是ARM汇编语言中的一条指令,用于从内存中加载多个寄存器的值。具体来说,LDMIA r0!,{r4 r11}的意思是从内存地址r0开始,连续加载r4到r11这8个寄存器的值[^1]。 下面是一个示例代码,演示了如何使用LDMIA指令加载寄器的值: ```assembly LDMIA r0!, {r4-r11} ;从内存地址r0开始,连续加载r4到r11这8个寄存器的值 ``` 在这个示例中,LDMIA指令将会从内存地址r0开始,依次将内存中的值加载到r4、r5、r6、r7、r8、r9、r10和r11这8个寄存器中。
recommend-type

西门子MES-系统规划建议书(共83页).docx

"西门子MES系统规划建议书是一份详细的文档,涵盖了西门子在MES(制造执行系统)领域的专业见解和规划建议。文档由西门子工业自动化业务部旗下的SISW(西门子工业软件)提供,该部门是全球PLM(产品生命周期管理)软件和SIMATIC IT软件的主要供应商。文档可能包含了 MES系统如何连接企业级管理系统与生产过程,以及如何优化生产过程中的各项活动。此外,文档还提及了西门子工业业务领域的概况,强调其在环保技术和工业解决方案方面的领导地位。" 西门子MES系统是工业自动化的重要组成部分,它扮演着生产过程管理和优化的角色。通过集成的解决方案,MES能够提供实时的生产信息,确保制造流程的高效性和透明度。MES系统规划建议书可能会涉及以下几个关键知识点: 1. **MES系统概述**:MES系统连接ERP(企业资源计划)和底层控制系统,提供生产订单管理、设备监控、质量控制、物料跟踪等功能,以确保制造过程的精益化。 2. **西门子SIMATIC IT**:作为西门子的MES平台,SIMATIC IT提供了广泛的模块化功能,适应不同行业的生产需求,支持离散制造业、流程工业以及混合型生产环境。 3. **产品生命周期管理(PLM)**:PLM软件用于管理产品的全生命周期,从概念设计到报废,强调协作和创新。SISW提供的PLM解决方案可能包括CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAE(计算机辅助工程)等工具。 4. **工业自动化**:西门子工业自动化业务部提供自动化系统、控制器和软件,提升制造业的效率和灵活性,包括生产线自动化、过程自动化和系统整体解决方案。 5. **全球市场表现**:SISW在全球范围内拥有大量客户,包括许多世界500强企业,表明其解决方案在业界的广泛应用和认可。 6. **中国及亚洲市场**:SISW在中国和亚洲其他新兴市场具有领先地位,特别是在CAD领域,反映了其在这些地区的重要影响力。 7. **案例研究**:文档可能包含实际案例,如通用汽车的全球产品开发项目,展示SISW技术在大型复杂项目中的应用能力。 这份建议书不仅对理解西门子MES系统有重要作用,也为企业在选择和实施MES系统时提供了策略性指导,有助于企业规划和优化其生产流程,实现更高效的制造业运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

掌握MATLAB函数调用性能优化秘籍,提升函数调用效率

![掌握MATLAB函数调用性能优化秘籍,提升函数调用效率](https://www.iar.com/siteassets/china/china-learn-programming-complier-5.png) # 1. MATLAB函数调用性能优化概述 MATLAB函数调用性能优化是提高MATLAB应用程序性能的关键。本文将全面介绍MATLAB函数调用性能优化的原理、方法和实践,帮助读者深入理解和优化MATLAB函数调用,从而提升应用程序性能。 本概述将涵盖以下内容: * MATLAB函数调用性能优化的重要性 * MATLAB函数调用性能优化的目标和范围 * MATLAB函数调用性
recommend-type

MMCV Normalize 调用方法

MMCV(OpenMMLab Computer Vision Library)是一个基于PyTorch的开源计算机视觉库,提供了丰富的计算机视觉任务的模型和工具。其中,MMCV Normalize是MMCV库中的一个函数,用于对图像进行归一化处理。 调用MMCV Normalize的方法如下: 1. 首先,导入相关的库和函数: ```python import mmcv from mmcv.runner import load_checkpoint from mmcv.parallel import collate, scatter from mmcv.runner import wrap
recommend-type

6、毕设参考资料 for.pdf

"6、毕设参考资料 for.pdf" 这篇毕业设计论文主要探讨了民机传感器故障的检测和隔离算法,作者是孙雯雯,研究聚焦在民航装备的故障预测与健康管理(PHM)技术,特别是针对传感器故障的诊断方法。随着中国民航业的迅速发展,飞机数量的增加以及系统复杂性的提升,传统维护方式已不能满足需求,因此,实时、精确且经济的故障预测和健康管理显得至关重要。 论文的核心内容分为以下几个方面: 1. 故障检测与隔离方案:针对民机机电系统的传感器,研究了一种基于一般化模型的故障检测和隔离方法。通过仿真分析,此方案能够有效识别传感器可能出现的故障,提高了故障识别的效率和准确性。 2. 鲁棒估计方案:针对传感器的一般化模型,论文进一步探讨了鲁棒估计方案。即使在系统存在不确定性或干扰的情况下,也能对故障信号进行有效的估计,增强了算法的稳健性。 3. 联合滑模观测器和鲁棒估计:论文提出了一种结合联合滑模观测器和鲁棒估计的故障估计算法,该算法在实际应用中,能有效处理系统不确定性,对传感器故障的估计表现出良好的性能,具有较高的工程实用价值。 关键词涵盖了传感器故障检测、隔离方案、观测器、数学模型等关键概念,表明论文深入研究了这些领域的理论与应用。 这篇毕业设计论文为提高民机系统的可靠性与安全性提供了理论基础和实践指导,对于民航装备的故障预测与健康管理领域具有重要的研究价值。通过这些先进的故障诊断和管理策略,可以降低维护成本,延长设备寿命,并确保飞行安全。