‘x0’ ‘x1’ ‘x2’ ‘x3’ ‘x4’ ‘x5’ ‘x6’ ‘x7’ ‘x8’ 这个怎么再转成字符串?

时间: 2024-01-10 22:20:28 浏览: 26
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8" 可以转换成字符串的方法有很多,以下是其中两种方法: 1. 使用字符串拼接符号“+”将它们连接起来: ``` std::string str = "x0" + "x1" + "x2" + "x3" + "x4" + "x5" + "x6" + "x7" + "x8"; ``` 2. 使用stringstream类: ``` std::stringstream ss; ss << "x0" << "x1" << "x2" << "x3" << "x4" << "x5" << "x6" << "x7" << "x8"; std::string str = ss.str(); ```
相关问题

我定义的计算目标函数的函数为,def quadratic(bd_X, bd_Y, x3, x4): x1 = 0.25*(((DX*(bd_X-1))**2 + (DY*(bd_Y-1))**2)**0.5+ ((DX*(51-bd_X))**2 + (DY*(bd_Y-1))**2)**0.5 + ((DX*(bd_X-1))**2 + (DY*(51-bd_Y))**2)**0.5 + ((DX*(51-bd_X))**2 + (DY*(51-bd_Y))**2)**0.5) x2 = (((bd_X-mbjx)**2 + (bd_Y-mbjy)**2 )**0.5)*DX x5 = train_optimize2[4] x6 = train_optimize2[5] x7 = train_optimize2[6] x8 = train_optimize2[7] x9 = train_optimize2[8] x10 = train_optimize2[9] x11 = train_optimize2[10] x12 = train_optimize2[11] x13 = train_optimize2[12] x14 = train_optimize2[13] x15 = train_optimize2[14] x16 = train_optimize2[15] x17 = train_optimize2[16] x18 = train_optimize2[17] x19 = train_optimize2[18] with open('regressor_model.pkl', 'rb') as f: model = pickle.load(f) x_train = np.array([[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14,x15,x16,x17,x18,x19]]) y_predict = model.predict(x_train) Y = y_predict return -Y

好的,根据您给出的代码,可以看出目标函数的计算涉及到一些外部的变量和模型,这里简单介绍一下如何将其与 CMA-ES 优化器结合起来。 首先,我们需要将 `quadratic()` 函数转换为只接受一个参数(即解向量),并返回一个标量值(即目标函数值)的形式。其次,由于 `quadratic()` 函数的计算需要使用一些外部的变量和模型,我们可以使用 Python 的函数闭包(closure)特性来包装 `quadratic()` 函数,以便在闭包内访问这些外部变量和模型。 下面是一个示例代码,其中假设您已经定义好了 `DX`、`DY`、`train_optimize2`、`mbjx` 和 `mbjy` 等变量: ```python import numpy as np import cma import pickle # 定义目标函数 def make_objective(DX, DY, train_optimize2, mbjx, mbjy): def objective(x): bd_X, bd_Y, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19 = x x1 = 0.25*(((DX*(bd_X-1))**2 + (DY*(bd_Y-1))**2)**0.5+ ((DX*(51-bd_X))**2 + (DY*(bd_Y-1))**2)**0.5 + ((DX*(bd_X-1))**2 + (DY*(51-bd_Y))**2)**0.5 + ((DX*(51-bd_X))**2 + (DY*(51-bd_Y))**2)**0.5) x2 = (((bd_X-mbjx)**2 + (bd_Y-mbjy)**2 )**0.5)*DX with open('regressor_model.pkl', 'rb') as f: model = pickle.load(f) x_train = np.array([[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19]]) y_predict = model.predict(x_train) Y = y_predict return -Y return objective # 定义变量边界 bounds = [[1, 51], [1, 51], [-5, 5], [-5, 5], -np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf] # 初始化 CMA-ES 优化器 objective = make_objective(DX, DY, train_optimize2, mbjx, mbjy) x0 = np.mean(bounds, axis=1) sigma0 = 0.5 optimizer = cma.CMAEvolutionStrategy(x0, sigma0, {'bounds': bounds}) # 运行优化器 while not optimizer.stop(): solutions = optimizer.ask() # 获取一组解向量 fitness_list = [objective(x) for x in solutions] # 计算目标函数值 optimizer.tell(solutions, fitness_list) # 更新优化器内部状态 best_solution = solutions[np.argmin(fitness_list)] # 获取当前最优解 best_fitness = np.min(fitness_list) # 获取当前最优解的目标函数值 print(f'Best solution: {best_solution}, Best fitness: {best_fitness}') ``` 在上面的代码中,我们定义了一个 `make_objective()` 函数,用于创建一个闭包,其中包含 `quadratic()` 函数及其依赖的外部变量和模型。然后,我们使用 `make_objective()` 函数创建一个目标函数 `objective`,并将其传递给 CMA-ES 优化器进行优化。在每一轮迭代中,我们打印当前最优解和最优解的目标函数值,以便进行跟踪和分析。

【问题描述】 编写一个程序实现两个一元多项式相乘。 【输入形式】 首先输入第一个多项式中系数不为0的项的个数,然后在新的一行上输入以空格分隔的整数,代表一个多项式,且该多项式中各项的系数均为0或正整数,最高幂次不超过50。对于多项式 anxn + an-1xn-1+ ... + a1x1 + a0x0 (n<50)的输入方法如下: an n an-1 n-1 ... a1 1 a0 0 即相邻两个整数分别表示表达式中一项的系数和指数。在输入中只出现系数不为0的项。 按照上述方式再输入第二个多项式。 【输出形式】 将运算结果输出到屏幕。将系数不为0的项按指数从高到低的顺序输出,每次输出其系数和指数,均以一个空格分隔。最后要求换行。 【样例输入】 5 10 8 2 6 7 3 5 1 18 0 3 3 7 5 2 8 1 【样例输出】 30 15 6 13 71 10 80 9 25 8 70 7 35 5 56 4 25 3 130 2 144 1 【样例说明】 输入的两行分别代表如下表达式: 10x8 + 2x6 + 7x3 + 5x + 18 3x7 + 5x2 + 8x 相乘结果为: 30x15 + 6x13 + 71x10 + 80x9 + 25x8 + 70x7 + 35x5 + 56x4 + 25x3 + 130x2 + 144x。用c语言编写

```c #include<stdio.h> #include<string.h> #define MAX_N 55 struct Poly { int a[MAX_N]; }A, B, C; int main() { int m, n; memset(A.a, 0, sizeof(A.a)); memset(B.a, 0, sizeof(B.a)); memset(C.a, 0, sizeof(C.a)); scanf("%d", &m); for (int i = 0; i < m; i++) { int coe, exp; scanf("%d %d", &coe, &exp); A.a[exp] = coe; } scanf("%d", &n); for (int i = 0; i < n; i++) { int coe, exp; scanf("%d %d", &coe, &exp); B.a[exp] = coe; } for (int i = 0; i < MAX_N; i++) { for (int j = 0; j < MAX_N; j++) { C.a[i + j] += A.a[i] * B.a[j]; } } int flag = 0; for (int i = MAX_N - 1; i >= 0; i--) { if (C.a[i]) { if (flag) printf(" "); printf("%d %d", C.a[i], i); flag = 1; } } printf("\n"); return 0; } ```

相关推荐

用c++完成步骤一.设计八数码格局的隐式存储的节点结构: 将表示棋局的状态用如下向量表示: A=(X0,X1 ,X2 ,X3 ,X4 ,X5 , X6 , X7 ,X8) 约束条件: XiÎ{0,1 ,2,3,4,5,6,7,8} Xi¹Xj,当i¹j时。 初始状态: S0 =(0,1,3,2,4,8,7,6,5) 目标状态: Sg =(0,1,2,3,4,5,6,7,8) 步骤二. 采用广度优先、深度优先搜索算法实现搜索。 步骤三. 设计启发函数,启发函数可参考如下定义方法: (1)启发函数h(n)定义为:h(n)=w(n) 其中,w(n)代表n的格局域目标节点格局相比,位置不符的将牌数目。 (2)估计函数f(n)定义为:f(n)=d(n)+w(n) 其中,d(n)表示节点深度,w(n)意义与前同。 (3)对w(n)进一步改进:令h(n)=P(n) 其中,p(n)是n格局中每个将牌离家(在sg中的位置)的最短距离。 (4)另一种改进:h(n)=p(n)+3s(n) 其中, s(n)是这样计算的:沿着周围哪些非中心方格上依顺时针方向检查n格局上的每一个将牌,如果其后紧跟着的将牌正好是目标格局中该将牌的后续者,则该将牌得0分,否则得2分;在正中方格上有将牌得1分,否则得0分 步骤四.选择并设计搜索算法。 (1)使用全局择优的树式搜索算法,即启发式的宽度优先搜索算法,但要考虑去掉已生成的格局。 (2)使用局部择优的树式搜索算法,即启发式的深度优先搜索算法,但要考虑去掉已生成的格局。 (3)使用A算法或A*算法,即图的启发式搜索算法,比上述两个算法略有难度。 步骤五 设计输出 动态演示格局的变化情况,即数码的移动情况。 步骤六 编写代码,调试程序。

Unable to handle kernel paging request at virtual address 0000000200005401 [ 21.757454] Mem abort info: [ 21.760240] ESR = 0x96000004 [ 21.763286] Exception class = DABT (current EL), IL = 32 bits [ 21.769199] SET = 0, FnV = 0 [ 21.772245] EA = 0, S1PTW = 0 [ 21.775378] Data abort info: [ 21.778250] ISV = 0, ISS = 0x00000004 [ 21.782078] CM = 0, WnR = 0 [ 21.785038] [0000000200005401] user address but active_mm is swapper [ 21.791385] Internal error: Oops: 96000004 [#2] PREEMPT SMP [ 21.796951] Modules linked in: [ 21.800002] CPU: 0 PID: 1 Comm: swapper/0 Tainted: G S D 4.19.0-4.19.9-x100-0707+ #30 [ 21.808956] Hardware name: E2000Q TESTC DDR4 Board (DT) [ 21.814175] pstate: 20000085 (nzCv daIf -PAN -UAO) [ 21.818963] pc : __kmalloc+0xe8/0x248 [ 21.822618] lr : __kmalloc+0x48/0x248 [ 21.826272] sp : ffff000008003c50 [ 21.829580] x29: ffff000008003c50 x28: 0000000000000001 [ 21.834888] x27: ffff000009911158 x26: ffff000009c267cb [ 21.840196] x25: 0000000000000000 x24: 0000000000000001 [ 21.845504] x23: 0000000000016e00 x22: ffff000008733b0c [ 21.850812] x21: 0000000000480020 x20: 0000000200005401 [ 21.856120] x19: ffff8020ff803800 x18: ffffffffffffffff [ 21.861429] x17: 0000000000001800 x16: 0000000000000000 [ 21.866737] x15: ffff000009b696c8 x14: 0720072007200720 [ 21.872044] x13: 0720072007200720 x12: 0720072007200720 [ 21.877353] x11: 0720072007200720 x10: 0000000000000040 [ 21.882660] x9 : ffff000009b84f20 x8 : ffff8020ff400248 [ 21.887968] x7 : ffff8020ff4002b8 x6 : 0000000000000048 [ 21.893276] x5 : 00008020f6425000 x4 : 0000000000000000 [ 21.898584] x3 : ffff7e0083d67e00 x2 : 00008020f6425000 [ 21.903892] x1 : 0000000000000000 x0 : 0000000000000001 [ 21.909201] Process swapper/0 (pid: 1, stack limit = 0x(____ptrval____)) [ 21.915895] Call trace: [ 21.918335] __kmalloc+0xe8/0x248 [ 21.921646] __tty_buffer_request_room+0x7c/0x148 [ 21.926344] __tty_insert_flip_char+0x28/0x80 [ 21.930696] uart_insert_char+0xd4/0x140 [ 21.934613] pl011_fifo_to_tty+0x88/0x1b8 [ 21.938616] pl011_int+0x340/0x488分析一下这段内核报错

最新推荐

recommend-type

“推荐系统”相关资源推荐

推荐了国内外对推荐系统的讲解相关资源
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键
recommend-type

ipqc工作总结PPT.pptx

"这是一份关于IPQC(在制品质量控制)的工作总结PPT,涵盖了IPQC的角色定义、工作总结、质量月报、质量提升计划、团队发展计划以及未来展望。" IPQC,全称为InProcess Quality Control,在制品质量控制,是制造过程中至关重要的一个环节。IPQC的主要职责在于通过抽检和检验在制品,确保生产出的产品符合预设的质量标准和客户期望。他们的工作包括但不限于: 1. **质量检验与控制**:对在制品进行定期抽样检验,以确认产品质量是否达标。 2. **环境与设备监控**:检查生产现场的环境条件和设备运行状态,确保符合生产要求。 3. **关键控制点检查**:在生产的关键阶段进行严格检查,及时发现问题。 4. **不合格品管理**:对不合格品进行标识、隔离,并追踪问题的解决过程。 5. **制定检验计划**:根据生产计划和产品标准,制定相应的检验程序和标准。 6. **数据收集与分析**:记录检验数据,通过分析找出潜在问题,提出改善建议。 在工作总结部分,IPQC强调了实时监控生产过程,确保每个环节都符合质量标准。他们定期抽检产品,快速反馈问题,并进行异常分析与改进,防止问题重复出现。此外,IPQC还负责对新员工进行培训,提高团队协作和管理,以提升整体工作效率和质量水平。 在IPQC质量月报中,提到了质量目标的达成情况。虽然目标完成率达到了98%,但仍有2%的差距,主要是由于员工操作失误和质量监控不足造成的。为了改进,IPQC计划加强员工培训,提高操作技能,增强质量意识,并增加检查频率,以更严格地控制产品质量。 对于未来的展望,IPQC可能会进一步强化团队建设,优化工作流程,持续提升产品质量,以达到更高的客户满意度。团队发展计划可能包括更系统的员工培训、更高效的沟通机制以及更有激励性的管理策略。 这份PPT详细呈现了IPQC在确保产品质量、处理异常情况、提高团队绩效等方面的工作内容和挑战,同时也展现了IPQC团队对质量提升和团队发展的持续关注和努力。