在[-1,1]上,f(x)=|x|求出在Ф¡ ={span{1.x.x∧2}中的最佳平方逼近函数。MATLAB

时间: 2024-10-29 10:13:03 浏览: 18
ZIP

CCR.VirtualKeying:Delphi的虚拟按键界面(WindowsOS X)

在[-1, 1]区间上,你提到的函数 \( f(x) = |x| \) 是一个非线性的简单函数,它是一个绝对值函数,对于 \( x \geq 0 \),\( f(x) = x \),对于 \( x < 0 \),\( f(x) = -x \)。为了在正交基 \(\Phi_n = \{1, x, x^2\}\) 中找到最佳平方逼近函数,我们通常会寻找多项式基下的最小二乘拟合。 在这个例子中,因为 \( x^2 \) 已经包含了 \( x \) 的二次信息,而 \( |x| \) 并不是 \( x \) 或者 \( x^2 \) 的线性组合,所以最佳的平方逼近函数不会是包含 \( x^2 \) 的。实际上,最佳的二次多项式近似将是只包含 \( x \) 和常数项的,即一次函数 \( p(x) = a + bx \),其中 \( a \) 和 \( b \) 是通过最小化 \( \int_{-1}^{1} (|x| - p(x))^2 dx \) 来确定的系数。 在 MATLAB 中,你可以这样做: ```matlab % 定义数据点 (x, y) 对于 f(x) x = linspace(-1, 1, 100); % 等间距采样 [-1, 1] y = abs(x); % 初始化多项式的系数矩阵和常数项 A = [ones(size(x)), x]; b = zeros(1, size(x)); % 最小二乘求解 coeffs = inv(A'*A)*A'*y; % 最佳二次逼近函数 p(x) p_x = coeffs(1) + coeffs(2)*x; ```
阅读全文

相关推荐

#include<stdio.h> #include<stm32f10x.h> void Init_NVIC(void); void InitGPIOB(void); void InitGPIOA(void); int main() { extern u32 Tick_Tenms,Tick_sec;//Tick_Tenms Tick_Sec u32 current,led_value; u32 cnt=0; u32 key1; u32 key2; u32 led_state=1; u32 led_dir=1; Init_NVIC();//SysTick³õʼ»¯£¬¶¨Ê±²úÉúÖÐ¶Ï InitGPIOB();//ÅäÖÃInitGPIoBÒý½ÅΪÊä³öģʽ£¬¿ØÖÆLEDµÄÁÁÃð£¬Êä³öµÍµçƽµÆÁÁ InitGPIOA(); GPIOB->ODR=0;//8¸öµÆ×î³õΪȫÁÁ״̬ current=Tick_Tenms+5; while(1) key1 = GPIOA->IDR&(1 << 8); key2 = GPIOA->IDR&(1 << 11); if(!key1){ while(!key1) //delay_ms(1): key1 = GPIOA->IDR&(1 << 8); led_state = !led_state; } if(!key2){ while( !key2); //delay_ms (1) ; key2 = GPIOA->IDR&(1 << 11) ; led_dir=!led_dir; } if(led_state){ if(current<=Tick_Tenms){ current=Tick_Tenms+50; if(led_dir) led_value=~(1<<cnt); else led_value=~(1<<(7-cnt)); led_value&=0x00ff; cnt++; if(cnt==8){ cnt=0; } } GPIOB->ODR=(GPIOB->ODR&0x0ff00)+led_value;//Êä³öÐźŠ} } void InitGPIOB() { RCC->APB2ENR|=0x0008;//ʱÖÓʹÄÜ£¬GPIOB¶ÔÓ¦bit4λ GPIOB -> CRL =0x33333333 ;//ÉèÖÃÒý½Å GPIOB .0~ GPIOB .7ΪÊä³ö50MHZ£¬ÍÆÍì»ò¿ªÂ©£¬×îµÍλ RCC ->APB2ENR|=0x01; AFIO -> MAPR |=0x02000000; } void InitGPIOA (){ RCC->APB2ENR|=0x0004;//ʱÖÓʹÄÜ, GPIOA¶ÔÓ¦bit3λ GPIOA -> CRH =( GPIOA ->CRH&0xffff00f)|0x00004004;//ÉèÖÃÒý½Å GPIOA .8ºÍ GPIOA .11Ϊ¸¡¿ÕÊäÈëģʽ£¬µ×°åµç·ÓÐÉÏÀ­µç×è } 给出上述代码的流程图

#include "spi.h" #include "stm32f10x.h" #include "delay.h" void MAX6675_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); //pb13,pb14 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOB, &GPIO_InitStructure); SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI2, &SPI_InitStructure); SPI_Cmd(SPI2, ENABLE); } unsigned int TEMP_ReadReg(void) { unsigned char i; unsigned int Temp_2=0; CS=1; SCK=0; __NOP(); __NOP(); CS=0; for(i=0;i<16;i++) { Temp_2<<=1; __NOP(); __NOP(); SCK=1; __NOP(); __NOP(); if(SO==1) { Temp_2=Temp_2|0x01; } else Temp_2=Temp_2|0x00; __NOP(); SCK=0; __NOP(); __NOP(); } SCK =0; __NOP(); __NOP(); CS=1; Temp_2<<=1; Temp_2>>=4;//λÒÆ»ØÀ´²¹Ò»Î» È¡Öµ3-14λ return Temp_2; }

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自