农夫过河问题python实现
时间: 2024-10-22 19:07:32 浏览: 28
农夫过河问题是一个经典的动态规划(Dynamic Programming, DP)问题,通常涉及将动物(如牛、羊和鸡)从一边的岸运送到另一边,同时考虑每种动物单独过河需要船员陪同,而马可以同时承载其他两个动物过河。这里我们给出一个简单的Python实现:
```python
def ferry-crossing(farmyard, limit=1):
dp = [[0] * (farmyard + 1) for _ in range(farmyard + 1)]
# 初始化边界条件
dp[0][0] = dp[0][1] = dp[1][0] = 1
# 动态规划遍历
for i in range(2, farmyard+1):
for j in range(i+1):
if j - i >= 0 and i - (j - 2) >= 0: # 当前动物无法单独过河,只能由马带
dp[i][j] = dp[j - i][j - i] + dp[i - (j - 2)][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
return dp[farmyard][farmyard]
# 测试
print(ferry_crossing(4)) # 输出结果取决于农场里有多少种动物以及它们的数量
相关问题
农夫过河问题python
好的,农夫过河问题是一个经典的逻辑问题,题目描述如下:
一个农夫要带着一只狼、一只羊和一颗白菜过河,但是小船只能装下农夫和另外一件物品。如果农夫不在场,狼就会吃羊,羊不在场,白菜就会被吃。请问农夫如何才能安全地将这三样东西全部运到河的对岸?
以下是一个简单的 Python 实现:
```python
class State:
def __init__(self, farmer, wolf, goat, cabbage, boat):
self.farmer = farmer # 0:在左岸,1:在右岸
self.wolf = wolf
self.goat = goat
self.cabbage = cabbage
self.boat = boat # 0:在左岸,1:在右岸
def is_valid(self):
if self.farmer not in [0, 1] or self.wolf not in [0, 1] or self.goat not in [0, 1] or self.cabbage not in [0, 1] or self.boat not in [0, 1]:
return False
if self.wolf == self.goat and self.farmer != self.wolf:
return False
if self.goat == self.cabbage and self.farmer != self.goat:
return False
return True
def is_goal(self):
return self.farmer == 1 and self.wolf == 1 and self.goat == 1 and self.cabbage == 1
def __eq__(self, other):
return self.farmer == other.farmer and self.wolf == other.wolf and self.goat == other.goat and self.cabbage == other.cabbage and self.boat == other.boat
def __hash__(self):
return hash((self.farmer, self.wolf, self.goat, self.cabbage, self.boat))
class Node:
def __init__(self, state, parent=None, action=None):
self.state = state
self.parent = parent
self.action = action
def expand(self):
children = []
for a in ["farmer", "wolf", "goat", "cabbage"]:
new_state = State(self.state.farmer, self.state.wolf, self.state.goat, self.state.cabbage, self.state.boat)
setattr(new_state, a, 1 - getattr(self.state, a)) # 改变属性值
new_state.boat = 1 - self.state.boat # 船也过河了
child = Node(new_state, self, a)
if new_state.is_valid():
children.append(child)
return children
def bfs(initial_state):
initial_node = Node(initial_state)
if initial_state.is_goal():
return initial_node
frontier = [initial_node]
explored = set()
while frontier:
node = frontier.pop(0)
explored.add(node.state)
for child in node.expand():
if child.state.is_goal():
return child
if child.state not in explored and child not in frontier:
frontier.append(child)
return None
initial_state = State(0, 0, 0, 0, 0)
solution = bfs(initial_state)
if not solution:
print("No solution found!")
else:
path = []
node = solution
while node:
path.append(node)
node = node.parent
path.reverse()
for node in path:
print(node.state.farmer, node.state.wolf, node.state.goat, node.state.cabbage, node.state.boat, node.action)
```
这里使用了 BFS 算法来搜索解决方案,首先定义了 `State` 类来表示状态,包含农夫、狼、羊、白菜和船的位置,以及一些辅助方法。然后定义了 `Node` 类来表示搜索树中的节点,包含一个状态和一个指向父节点的指针。最后定义了 `bfs` 函数来执行 BFS 算法搜索解决方案,返回最终状态的节点。
农夫过河问题Python代码
农夫过河问题是一个经典的智力游戏,题目描述如下:
农夫要带着一只狼、一只羊和一棵白菜过河。但是,河边只有一条小船,而且这条小船最多只能载两个物品(包括农夫),而且狼会吃羊,羊会吃白菜。请问,农夫应该如何安排,才能安全地把这三个物品都运到对岸?
下面是一个可能的Python代码实现:
```python
def farmer_cross_river(start, end):
# 定义初始状态和目标状态
initial_state = {'farmer': start, 'wolf': start, 'sheep': start, 'cabbage': start}
goal_state = {'farmer': end, 'wolf': end, 'sheep': end, 'cabbage': end}
# 定义安全状态
safe_states = [
{'farmer': start, 'wolf': start, 'sheep': start, 'cabbage': end},
{'farmer': start, 'wolf': start, 'sheep': end, 'cabbage': start},
{'farmer': end, 'wolf': end, 'sheep': start, 'cabbage': start},
{'farmer': end, 'wolf': end, 'sheep': end, 'cabbage': end},
{'farmer': end, 'wolf': start, 'sheep': end, 'cabbage': end}
]
# 定义当前状态和已经走过的状态
current_state = initial_state.copy()
walked_states = [current_state]
while current_state != goal_state:
# 判断当前状态可以到达哪些状态
next_states = []
for item1 in current_state:
if current_state[item1] == current_state['farmer']:
for item2 in current_state:
if current_state[item2] == current_state[item1]:
next_state = current_state.copy()
next_state['farmer'] = end if current_state['farmer'] == start else start
next_state[item1] = end if current_state['farmer'] == start else start
next_state[item2] = end if current_state['farmer'] == start else start
if next_state in safe_states and next_state not in walked_states:
next_states.append(next_state)
# 随机选择下一个状态
if len(next_states) > 0:
current_state = random.choice(next_states)
walked_states.append(current_state)
else:
# 如果没有下一个状态可以到达,则回溯到上一个状态
walked_states.pop()
current_state = walked_states[-1]
return walked_states
```
使用这个函数可以得到从起点到终点的所有可能状态的列表。
阅读全文