给出nsga2单目标优化的示例代码和解释
时间: 2024-09-12 15:11:52 浏览: 39
多目标优化NSGA3代码,NSGAII多目标算法,Python
5星 · 资源好评率100%
NSGA-II(非支配排序遗传算法第二版)是一种常用的多目标优化算法,它在Pareto前沿上维护多样性,并通过适应度函数的变异操作保持收敛。以下是一个简单的Python NSGA-II算法的伪代码示例:
```python
import numpy as np
class NSGAII:
def __init__(self, n_objs, pop_size, bounds):
self.n_objs = n_objs
self.pop_size = pop_size
self.bounds = bounds
self.pop = self.initialize_population()
def initialize_population(self):
# 初始化种群,通常随机生成在给定边界内的个体
return np.random.uniform(self.bounds[:, 0], self.bounds[:, 1], (self.pop_size, self.n_objs))
def fitness_function(self, individual):
# 自定义的目标函数计算每个个体的适应度值
return [individual[i] for i in range(self.n_objs)]
def non_dominance_sorting(self, population):
fronts = []
crowding_distance = np.zeros(population.shape[0])
for obj in range(self.n_objs - 1, -1, -1): # 从最后一个到第一个目标反向排序
dominated_front = []
non_dominated_set = set(range(len(population)))
for i in non_dominated_set:
dominates_count = 0
dominated_by_count = 0
for j in non_dominated_set - {i}:
if self.fitness_function(population[j])[:obj+1] >= self.fitness_function(population[i])[:obj+1]:
dominates_count += 1
elif self.fitness_function(population[j])[:obj+1] <= self.fitness_function(population[i])[:obj+1]:
dominated_by_count += 1
if dominates_count == 0:
dominated_front.append(i)
non_dominated_set.remove(i)
fronts.append(dominated_front)
# 计算拥挤距离,用于选择种群中非劣解的数量
for front in fronts:
for i in range(1, len(front)):
crowding_distance[front[i]] += self.crowd_diff(obj, front, i)
return fronts, crowding_distance
def crowd_diff(self, obj, front, index):
# 拓展拥挤度差异计算
max_fit = np.max(self.fitness_function(population[front]))
min_fit = np.min(self.fitness_function(population[front]))
return (max_fit - self.fitness_function(population[index])[obj]) + \
(min_fit - self.fitness_function(population[index])[obj])
def selection(self, fronts, crowding_distances):
selected = []
remaining = fronts[-1]
while len(selected) < len(fronts) * self.pop_size // len(fronts[-1]):
r = np.random.rand()
cum_dist = np.cumsum(crowding_distances[remaining])
if r < cum_dist[0]:
selected.append(remaining[0])
remaining.pop(0)
else:
idx = np.searchsorted(cum_dist, r)
selected.append(remaining[idx])
remaining.pop(idx)
return selected
def evolution(self, fronts, n_gen=100):
for _ in range(n_gen):
next_generation = []
for front in fronts:
next_generation.extend(self.selection(front, crowding_distances))
self.pop = np.array(next_generation)
fronts, _ = self.non_dominance_sorting(self.pop)
return self.pop
# 使用示例
optimizer = NSGAII(n_objs=2, pop_size=50, bounds=[(-10, 10), (-10, 10)])
solution = optimizer.evolution()
```
在这个例子中,`fitness_function`是你自定义的目标函数,返回的是一个表示每个个体适应度的列表。`initialize_population`用于创建初始种群,`non_dominance_sorting`进行非支配排序,`selection`选择下一代种群,`evolution`则是整个进化过程。
注意这只是一个基本框架,实际应用中可能还需要对算法细节如交叉、变异等进行调整。另外,对于真实项目,你需要结合具体的优化问题来编写适应度函数。
阅读全文