解释这段代码measures = {measure: float("nan") for measure in ("Sen", "Spe", "Acc", "PPV", "NPV", "MCC","AUC")}
时间: 2023-07-22 17:14:16 浏览: 201
这段代码使用了一个字典推导式来创建一个名为`measures`的字典。字典中的键是评估指标的名称,值被设置为`float("nan")`,表示这些指标的初始值为NaN(Not a Number)。
具体解释如下:
- `measure: float("nan")`:这是字典推导式的语法,表示每个键值对的形式。`measure`是评估指标的名称,`float("nan")`表示NaN值。
- `for measure in ("Sen", "Spe", "Acc", "PPV", "NPV", "MCC","AUC")`:这是迭代循环语句,用于遍历包含评估指标名称的元组。
这段代码的作用是创建了一个包含各个评估指标名称和对应NaN值的字典,用于存储后续计算得到的指标值。
相关问题
解释这段代码def get_measures_gridloo(label, score): label = np.array(label) score = np.array(score) N = len(label) TP = sum((label == 1) & (score == 1)) TN = sum((label == 0) & (score == 0)) FP = sum((label == 0) & (score == 1)) FN = sum((label == 1) & (score == 0)) # init all measures to nan measures = {measure: float("nan") for measure in ("Sen", "Spe", "Acc", "PPV", "NPV", "MCC","AUC")} measures["TP"] = TP measures["TN"] = TN measures["FP"] = FP measures["FN"] = FN S = (TP + FN) / N P = (TP + FP) / N if (TP + FN) > 0: #recall measures["Sen"] = round(TP/(TP+FN), 4) if (TN + FP) > 0: measures["Spe"] = round(TN/(TN+FP), 4) if (TP + FP + FN + TN) > 0: measures["Acc"] = round((TP+TN)/(TP+FP+FN+TN), 4) if (TP + FP) > 0: #precision measures["PPV"] = round(TP/(TP+FP), 4) if (TN + FN) > 0: measures["NPV"] = round(TN/(TN+FN), 4) if (2*TP+FP+FN) > 0: measures["F1"] = round((2*TP)/(2*TP+FP+FN), 4) measures["AUC"]= roc_auc_score(label, score) return pd.DataFrame([measures], columns=["TP", "TN", "FP", "FN", "Sen", "Spe", "Acc", "PPV", "NPV", "F1","AUC"])
这段代码是一个计算分类模型评估指标的函数。下面是每个变量的解释和计算过程:
- `label`:真实的分类标签数据
- `score`:模型预测的分类得分数据
接下来,代码将`label`和`score`转换为NumPy数组类型。
然后,代码计算以下指标:
- `N`:样本数量,即`label`的长度
- `TP`:真正例数量,即预测为正例且真实为正例的样本数量
- `TN`:真反例数量,即预测为反例且真实为反例的样本数量
- `FP`:假正例数量,即预测为正例但真实为反例的样本数量
- `FN`:假反例数量,即预测为反例但真实为正例的样本数量
然后,代码初始化一个字典`measures`,用于存储各个评估指标,并将其初始值设置为`nan`。
接下来,将计算得到的TP、TN、FP、FN的值存储到`measures`字典中。
接着,计算以下指标:
- `S`:敏感性(又称召回率)= TP / (TP + FN)
- `P`:精确度(又称准确度)= TP / (TP + FP)
如果TP + FN大于0,则将敏感性存储在`measures["Sen"]`中。
如果TN + FP大于0,则将特异性存储在`measures["Spe"]`中。
如果TP + FP + FN + TN大于0,则将准确率存储在`measures["Acc"]`中。
如果TP + FP大于0,则将精确度存储在`measures["PPV"]`中。
如果TN + FN大于0,则将负预测值存储在`measures["NPV"]`中。
如果2 * TP + FP + FN大于0,则将F1分数存储在`measures["F1"]`中。
最后,计算AUC(曲线下面积)得分,并将所有指标存储在一个DataFrame中返回。
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] =
Average Precision (AP) @[ IoU=0.50:0.95 | area=all | maxDets=100 ] is a commonly used evaluation metric in object detection tasks. It measures the accuracy of an object detection model by calculating the precision at different levels of intersection over union (IoU) thresholds.
Here's how AP is calculated:
1. IoU Calculation: For each predicted bounding box, the IoU is calculated by dividing the area of overlap between the predicted box and the ground truth box by the area of union between them.
2. Precision-Recall Curve: The precision and recall values are calculated for each predicted bounding box, considering it as a true positive if its IoU with any ground truth box exceeds a certain threshold (e.g., 0.5). The precision is the ratio of true positives to the total number of predicted boxes, and the recall is the ratio of true positives to the total number of ground truth boxes.
3. Average Precision Calculation: The precision-recall curve is computed by varying the IoU threshold from 0.5 to 0.95. The average precision is then calculated as the area under this curve.
The specific parameters in the notation @[ IoU=0.50:0.95 | area=all | maxDets=100 ] indicate that the AP is calculated using IoU thresholds ranging from 0.50 to 0.95, considering all object sizes (area=all), and considering a maximum of 100 detections per image (maxDets=100).
阅读全文