python最小生成树实例
时间: 2024-11-28 15:14:00 浏览: 27
在Python中,可以使用Prim算法或Kruskal算法来解决最小生成树问题。这里以Prim算法为例,它从无边界的图开始,每次选择当前未加入的节点中距离已连接点最近的一条边,直到所有节点都被连接起来形成一棵树。
```python
import heapq
def prim(graph, initial_vertex):
visited = {initial_vertex: 0}
unvisited = [(0, initial_vertex)]
min_heap = []
while unvisited:
current_weight, current_vertex = heapq.heappop(min_heap)
if current_vertex not in visited:
visited[current_vertex] = current_weight
for neighbor, weight in graph[current_vertex].items():
if neighbor not in visited:
heapq.heappush(min_heap, (weight, neighbor))
return visited
# 示例图的邻接字典表示(键为节点,值为字典,存储相邻节点及其权重)
graph = {
'A': {'B': 4, 'C': 3},
'B': {'A': 4, 'D': 5, 'E': 6},
'C': {'A': 3, 'D': 8},
'D': {'B': 5, 'C': 8, 'E': 7, 'F': 9},
'E': {'B': 6, 'D': 7, 'F': 11},
'F': {'D': 9, 'E': 11}
}
# 使用初始顶点'A'
min_cost_tree = prim(graph, 'A')
print(min_cost_tree) # 输出最小生成树的每个节点到根的成本
阅读全文