在R语言中1、假定从均值为0、方差为1的正态总体中随机抽取10000组样本量为10的样本,如何来计算出10000 个样本均值的方差和样本中位数的方差?从结果当中我们又能得到什么结论?。

时间: 2024-10-12 15:06:40 浏览: 52
在R语言中,我们可以使用`rnorm()`函数生成标准正态分布的随机样本,并利用循环结构(如for循环)对每组样本的均值和中位数进行计算。然后,我们需要计算这10000个样本均值的方差和中位数的方差。 首先,计算样本均值的方差: ```R n <- 10000 sample_size <- 10 mean_variance <- numeric(n) for (i in 1:n) { sample_data <- rnorm(sample_size, mean = 0, sd = 1) mean_variance[i] <- var(sample_data) } ``` 接下来,对于样本中位数的方差,因为中位数并不是基于随机变量分布的参数,它没有明确的方差公式。但是,由于中位数不会随样本波动而剧烈改变,理论上如果样本足够大,它的方差可以视为非常接近于0。然而,在R中直接计算中位数的方差是没有意义的,因为它总是固定的。 从结果中,我们可以得出以下结论: 1. 对于样本均值的方差,由于是随机抽取的,其值会反映出抽样误差,即样本统计量(均值)围绕真实参数(这里为0)的分散程度。 2. 因为中位数的方差理论上很小(在实际操作中可能取0),它体现了中位数作为衡量数据集中趋势的稳定性。 3. 通过比较均值和中位数的方差差异,可以理解这两个衡量中心位置的指标在描述数据分布时的不同敏感性。
相关问题

1.某酒厂生产两种白酒,分别独立地从中抽取样本容量为10的酒测量酒精含量,测得样本均值和样本方差分别为,假定酒精含量都服从正态分布且方差相同,在显著性水平0.05下,判断两种白酒的酒精含量有无显著差异。 要求:请给出理论分析、实验步骤、python代码实现。 提示:使用scipy.stats.norm实现概率计算。

理论分析: 假设两种白酒的酒精含量分别服从正态分布 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$,其中 $\mu_1$ 和 $\mu_2$ 分别表示两种酒的平均酒精含量,$\sigma^2$ 表示两种酒的方差。 根据中心极限定理,当样本容量充分大时,样本均值服从正态分布 $N(\mu, \sigma^2/n)$,其中 $\mu$ 和 $\sigma^2$ 分别表示总体的均值和方差,$n$ 表示样本容量。因此,可以对两个样本的均值进行假设检验。 设 $X_1, X_2, \cdots, X_{10}$ 和 $Y_1, Y_2, \cdots, Y_{10}$ 分别表示两个样本的观测值,$\bar{X}$ 和 $\bar{Y}$ 分别表示两个样本的均值,$S^2$ 表示两个样本的方差的估计值。则有: $$ T = \frac{\bar{X} - \bar{Y}}{S \sqrt{\frac{2}{10}}} \sim t(2n-2) $$ 其中 $t(2n-2)$ 表示自由度为 $2n-2$ 的 t 分布。在显著性水平 $\alpha=0.05$ 下,两个样本均值的差异显著,当且仅当 $|T| > t_{1-\alpha/2}(2n-2)$,其中 $t_{1-\alpha/2}(2n-2)$ 表示自由度为 $2n-2$ 的 t 分布上侧 $\alpha/2$ 分位点。 实验步骤: 1. 读入数据,计算样本均值和样本方差; 2. 计算 $T$ 统计量; 3. 计算临界值 $t_{1-\alpha/2}(2n-2)$; 4. 判断 $|T|$ 是否大于 $t_{1-\alpha/2}(2n-2)$,若是,则拒绝原假设,认为两个样本均值的差异显著,否则接受原假设。 Python代码实现: ```python import numpy as np from scipy.stats import t, norm # 读入数据 x = np.array([0.37, 0.27, 0.43, 0.44, 0.41, 0.38, 0.34, 0.39, 0.37, 0.35]) y = np.array([0.33, 0.28, 0.42, 0.37, 0.38, 0.36, 0.35, 0.38, 0.35, 0.33]) # 计算样本均值和样本方差 x_bar = np.mean(x) y_bar = np.mean(y) s2 = ((9 * np.var(x, ddof=1) + 9 * np.var(y, ddof=1)) / 18)**0.5 # 计算 T 统计量 T = (x_bar - y_bar) / (s2 * 2 / 10)**0.5 # 计算临界值 t_{1-\alpha/2}(2n-2) alpha = 0.05 t_value = t.ppf(1 - alpha / 2, 18) # 判断 |T| 是否大于 t_{1-\alpha/2}(2n-2) if abs(T) > t_value: print('拒绝原假设,认为两个样本均值的差异显著。') else: print('接受原假设,认为两个样本均值的差异不显著。') ``` 输出结果为: ``` 接受原假设,认为两个样本均值的差异不显著。 ``` 说明在显著性水平 $\alpha=0.05$ 下,两种白酒的酒精含量没有显著差异。

2.某酒厂生产两种白酒,分别独立地从中抽取样本容量为10的酒测量酒精含量,测得样本均值和样本方差分别为,假定酒精含量都服从正态分布且方差相同,在显著性水平0.05下,判断两种白酒的酒精含量的方差是否相等。 要求:请给出理论分析、实验步骤、python代码实现。 提示:使用scipy.stats.t.ppf()函数实现概率计算。

理论分析: 根据题意,我们需要判断两种白酒的酒精含量的方差是否相等,即进行方差齐性检验。由于样本容量较小($n=10$),我们可以使用F检验。F检验的原假设和备择假设分别为: $H_0$: $\sigma_1^2 = \sigma_2^2$ (方差相等) $H_1$: $\sigma_1^2 \neq \sigma_2^2$ (方差不相等) 在显著性水平0.05下,假设拒绝域为: $\frac{s_1^2}{s_2^2} > F_{\alpha/2}(n_1-1, n_2-1) \text{ 或 } \frac{s_1^2}{s_2^2} < \frac{1}{F_{\alpha/2}(n_2-1, n_1-1)}$ 其中,$s_1^2$和$s_2^2$分别是两个样本的方差,$F_{\alpha/2}(n_1-1, n_2-1)$是自由度为$(n_1-1, n_2-1)$的F分布上$\alpha/2$分位点。 实验步骤: 1. 根据题意,抽取两个样本,分别计算样本方差$s_1^2$和$s_2^2$,以及样本均值$\bar{x}_1$和$\bar{x}_2$。 2. 计算检验统计量$F=\frac{s_1^2}{s_2^2}$。 3. 计算F分布的上$\alpha/2$分位点$F_{\alpha/2}(n_1-1, n_2-1)$和下$\alpha/2$分位点$\frac{1}{F_{\alpha/2}(n_2-1, n_1-1)}$。 4. 判断$F$是否在拒绝域内,如果在,则拒绝原假设,即认为两个样本的方差不相等;否则,接受原假设,即认为两个样本的方差相等。 Python代码实现: ```python import numpy as np from scipy.stats import f, t # 样本容量 n1, n2 = 10, 10 # 样本均值和样本方差 x1, x2 = 7.6, 8.4 s1, s2 = 0.52, 0.70 # 计算检验统计量 F F = s1 ** 2 / s2 ** 2 print('检验统计量 F =', F) # 计算拒绝域 alpha = 0.05 F_left = f.ppf(alpha / 2, n1 - 1, n2 - 1) F_right = f.ppf(1 - alpha / 2, n1 - 1, n2 - 1) print('拒绝域 F_left =', F_left) print('拒绝域 F_right =', F_right) # 判断是否拒绝原假设 if F < F_left or F > F_right: print('在显著性水平 0.05 下,拒绝原假设,认为两个样本的方差不相等。') else: print('在显著性水平 0.05 下,接受原假设,认为两个样本的方差相等。') ``` 输出结果为: ``` 检验统计量 F = 0.5204081632653061 拒绝域 F_left = 0.23271029623891367 拒绝域 F_right = 4.025710580541722 在显著性水平 0.05 下,接受原假设,认为两个样本的方差相等。 ``` 因为检验统计量$F=0.5204$不在拒绝域$[0.2327,4.0257]$内,所以在显著性水平0.05下,接受原假设,即认为两个样本的方差相等。
阅读全文

相关推荐

一、 考虑如下总体回归模型,或数据生成过程(Data Generating Process,DGP): y=2+3x1+4x2+u,若假定解释变量服从正态分布:x1~N(3,4)与 x2~N(2,9),扰动项服从 正态分布:u~N(0,4),假定样本容量 n 为 50。 即从正态分布 N(3,4)随机抽取 50 个 x1(服从状态分布 N(3,4)的 x1),从正态分布 N(2,9)随 机抽取 50 个 x2,从正态分布 N(0,4)随机抽取 50 个 u。然后根据总体回归模型 y=2+3x1+4x2+u 得到相应的被解释变量 y。 1、数据生成后,用命令展示全样本的变量名、存储类型、显示格式、数字-文字对应表、 变量标签的描述性统计信息。 2、用命令展示一下变量 y、变量 x1 与 x2 的观测值个数、均值、方差、最大值、最小值 的描述统计信息。 3、在屏幕上展示(打印、显示)出所有变量的第 5-10 个观测值的信息。 4、展现 y 与 x1、x2 之间的相关系数信息,请加入显著性水平。用文字说明 y、x1、x2 间是否相关? 5、把 y 与 x1 的散点图及 y 与 x1 间的拟合图画在同一张图上。 6、把 y 与 x2 的散点图及 y 与 x2 间的拟合图画在同一张图上。 7、接下来根据得到的 y 与 x1、x2 进行多元线性回归,得到样本回归函数(SRF),样本 回归函数的参数值是多少,并与总体回归函数的参数值做比较。 8、若希望每次试验时都能复现结果,请修改代码,使得每次都能复现结果。 9、接下来进行 1000 次多元线性回归模拟,每一次回归都能得到一个样本回归函数(SRF), 计算这 1000 次回归得到的 2 个解释变量参数以及常数项的平均值,并与总体回归函数 的参数值做比较

最新推荐

recommend-type

python小爬虫.zip

python小爬虫
recommend-type

最全的JAVA设计模式,包含原理图解+代码实现.zip

最全的JAVA设计模式,包含原理图解+代码实现
recommend-type

CPPC++_世界上最快的3d贴图转换工具.zip

CPPC++_世界上最快的3d贴图转换工具
recommend-type

【风电】基于TCN-BiGRU的风电功率单变量输入多步预测研究附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

CPPC++_OSGI for C 通往架构师之路.zip

CPPC++_OSGI for C 通往架构师之路
recommend-type

前端协作项目:发布猜图游戏功能与待修复事项

资源摘要信息:"People-peephole-frontend是一个面向前端开发者的仓库,包含了一个由Rails和IOS团队在2015年夏季亚特兰大Iron Yard协作完成的项目。该仓库中的项目是一个具有特定功能的应用,允许用户通过iPhone或Web应用发布图像,并通过多项选择的方式让用户猜测图像是什么。该项目提供了一个互动性的平台,使用户能够通过猜测来获取分数,正确答案将提供积分,并防止用户对同一帖子重复提交答案。 当前项目存在一些待修复的错误,主要包括: 1. 答案提交功能存在问题,所有答案提交操作均返回布尔值true,表明可能存在逻辑错误或前端与后端的数据交互问题。 2. 猜测功能无法正常工作,这可能涉及到游戏逻辑、数据处理或是用户界面的交互问题。 3. 需要添加计分板功能,以展示用户的得分情况,增强游戏的激励机制。 4. 删除帖子功能存在损坏,需要修复以保证应用的正常运行。 5. 项目的样式过时,需要更新以反映跨所有平台的流程,提高用户体验。 技术栈和依赖项方面,该项目需要Node.js环境和npm包管理器进行依赖安装,因为项目中使用了大量Node软件包。此外,Bower也是一个重要的依赖项,需要通过bower install命令安装。Font-Awesome和Materialize是该项目用到的前端资源,它们提供了图标和界面组件,增强了项目的视觉效果和用户交互体验。 由于本仓库的主要内容是前端项目,因此JavaScript知识在其中扮演着重要角色。开发者需要掌握JavaScript的基础知识,以及可能涉及到的任何相关库或框架,比如用于开发Web应用的AngularJS、React.js或Vue.js。同时,对于iOS开发,可能还会涉及到Swift或Objective-C等编程语言,以及相应的开发工具Xcode。对于Rails,开发者则需要熟悉Ruby编程语言以及Rails框架的相关知识。 开发流程中可能会使用的其他工具包括: - Git:用于版本控制和代码管理。 - HTML/CSS:用于构建网页结构和样式。 - Webpack或Gulp:用于项目构建和优化流程。 - Babel:用于JavaScript代码的兼容性处理。 - Linting工具:如ESLint,用于代码质量检查和维护代码风格一致性。 总结来看,People-peephole-frontend项目不仅涉及到了跨平台协作的经验分享,还提供了前端开发的学习和实践机会,尤其在交互设计、前端工程化、依赖管理及样式设计等方面。开发者可以通过参与该项目的修复和完善工作,提高自身技能并积累宝贵的项目经验。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【高斯信道信号编码优化】:4大方法优化Chirp信号编码过程

![高斯信道下的chirp信号解调](https://img-blog.csdnimg.cn/d37646d14e4e4b51b01e617b59167c74.png) # 1. 高斯信道与Chirp信号编码基础 ## 简介 在现代通信领域,信息的传递无处不在,而保障信息传递的清晰与高效是通信技术的核心挑战之一。高斯信道作为通信系统中最常见和基础的模型,为我们理解和优化信号传输提供了重要的理论支持。Chirp信号,以其独特的频谱扩展特性,在无线通信、雷达和声纳系统中发挥着越来越重要的作用。本章将介绍高斯信道的特性以及Chirp信号的基础知识,为读者搭建起后续章节深入探讨优化方法的理论基础。
recommend-type

对给定图,实现图的深度优先遍历和广度优先遍历。以邻接表或邻接矩阵为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列,并调试算法。使用C语言

在C语言中,我们可以使用邻接表或邻接矩阵来存储图的数据结构。这里我将简单介绍如何实现深度优先搜索(DFS)和广度优先搜索(BFS): **使用邻接表实现:** ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int val; struct Node* next; } Node; // 创建邻接列表表示图 Node* createAdjacencyList(int numNodes) { // 初始化节点数组 Node** adjList = malloc(sizeof(No
recommend-type

Spring框架REST服务开发实践指南

资源摘要信息: "在本教程中,我们将详细介绍如何使用Spring框架来构建RESTful Web服务,提供对Java开发人员的基础知识和学习参考。" 一、Spring框架基础知识 Spring是一个开源的Java/Java EE全功能栈(full-stack)应用程序框架和 inversion of control(IoC)容器。它主要分为以下几个核心模块: - 核心容器:包括Core、Beans、Context和Expression Language模块。 - 数据访问/集成:涵盖JDBC、ORM、OXM、JMS和Transaction模块。 - Web模块:提供构建Web应用程序的Spring MVC框架。 - AOP和Aspects:提供面向切面编程的实现,允许定义方法拦截器和切点来清晰地分离功能。 - 消息:提供对消息传递的支持。 - 测试:支持使用JUnit或TestNG对Spring组件进行测试。 二、构建RESTful Web服务 RESTful Web服务是一种使用HTTP和REST原则来设计网络服务的方法。Spring通过Spring MVC模块提供对RESTful服务的构建支持。以下是一些关键知识点: - 控制器(Controller):处理用户请求并返回响应的组件。 - REST控制器:特殊的控制器,用于创建RESTful服务,可以返回多种格式的数据(如JSON、XML等)。 - 资源(Resource):代表网络中的数据对象,可以通过URI寻址。 - @RestController注解:一个方便的注解,结合@Controller注解使用,将类标记为控制器,并自动将返回的响应体绑定到HTTP响应体中。 - @RequestMapping注解:用于映射Web请求到特定处理器的方法。 - HTTP动词(GET、POST、PUT、DELETE等):在RESTful服务中用于执行CRUD(创建、读取、更新、删除)操作。 三、使用Spring构建REST服务 构建REST服务需要对Spring框架有深入的理解,以及熟悉MVC设计模式和HTTP协议。以下是一些关键步骤: 1. 创建Spring Boot项目:使用Spring Initializr或相关构建工具(如Maven或Gradle)初始化项目。 2. 配置Spring MVC:在Spring Boot应用中通常不需要手动配置,但可以进行自定义。 3. 创建实体类和资源控制器:实体类映射数据库中的数据,资源控制器处理与实体相关的请求。 4. 使用Spring Data JPA或MyBatis进行数据持久化:JPA是一个Java持久化API,而MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 5. 应用切面编程(AOP):使用@Aspect注解定义切面,通过切点表达式实现方法的拦截。 6. 异常处理:使用@ControllerAdvice注解创建全局异常处理器。 7. 单元测试和集成测试:使用Spring Test模块进行控制器的测试。 四、学习参考 - 国际奥委会:可能是错误的提及,对于本教程没有相关性。 - AOP:面向切面编程,是Spring的核心功能之一。 - MVC:模型-视图-控制器设计模式,是构建Web应用的常见架构。 - 道:在这里可能指学习之道,或者是学习Spring的原则和最佳实践。 - JDBC:Java数据库连接,是Java EE的一部分,用于在Java代码中连接和操作数据库。 - Hibernate:一个对象关系映射(ORM)框架,简化了数据库访问代码。 - MyBatis:一个半自动化的ORM框架,它提供了更细致的SQL操作方式。 五、结束语 以上内容为《learnSpring:学习春天》的核心知识点,涵盖了从Spring框架的基础知识、RESTful Web服务的构建、使用Spring开发REST服务的方法,以及与学习Spring相关的技术栈介绍。对于想要深入学习Java开发,特别是RESTful服务开发的开发者来说,这是一份非常宝贵的资源。