蒙特卡洛算法uct 五子棋python
时间: 2023-12-13 09:01:10 浏览: 303
蒙特卡洛算法是一种基于随机模拟的算法,可以用于解决很多复杂的决策问题。在五子棋中,使用蒙特卡洛算法可以帮助计算机找到最佳的下棋策略。
在Python中,我们可以使用蒙特卡洛算法来实现五子棋的计算机对弈程序。使用UCT(Upper Confidence Bounds for Trees)算法结合蒙特卡洛树搜索,可以让计算机在搜索空间中快速找到最优解,提高计算机的下棋水平。
首先,我们需要编写一个五子棋的游戏引擎,实现下棋规则和胜负判断等功能。然后,我们可以编写一个基于蒙特卡洛算法的计算机对弈程序,通过大量的模拟来评估每一步的可能走法,根据评估结果选择最优的下棋策略。
在计算机和玩家对弈时,计算机可以利用蒙特卡洛算法来搜索可能的下棋位置,然后选择最优的下棋策略。通过不断的模拟和更新状态价值,计算机可以逐步提高对弈水平,最终实现与人类玩家有一定竞争力的对弈能力。
总之,利用蒙特卡洛算法和UCT算法实现五子棋的计算机对弈程序,可以帮助我们提高对弈水平,也可以作为一个很好的学习和实践项目。
相关问题
蒙特卡洛树搜索算法五子棋
### Monte Carlo Tree Search Algorithm Implementation for Gomoku
Monte Carlo Tree Search (MCTS) is a heuristic search algorithm often used in artificial intelligence applications, especially game playing. In the context of Gomoku or Five-in-a-Row, MCTS can be implemented to create an intelligent opponent that makes decisions based on simulations and evaluations.
#### Key Components of MCTS
The core components include selection, expansion, simulation, and backpropagation:
- **Selection**: Traverse nodes from root until reaching leaf node.
- **Expansion**: Add one or more child nodes to the leaf node selected during Selection phase.
- **Simulation**: Run random playouts starting at expanded node.
- **Backpropagation**: Update statistics up through tree hierarchy after Simulation completes.
```python
import numpy as np
from copy import deepcopy
class TreeNode(object):
def __init__(self, parent=None, prior_p=1.0):
self._parent = parent
self._children = {}
self._n_visits = 0
self._Q = 0
self._u = 0
self._P = prior_p
def select_action(node, c_param=5):
"""Select action with highest upper confidence bound."""
best_value = float("-inf")
best_actions = []
for action, child_node in node._children.items():
value = child_node.get_value(c_param)
if value > best_value:
best_value = value
best_actions = [action]
elif value == best_value:
best_actions.append(action)
return np.random.choice(best_actions)
def expand_and_evaluate(board_state, player_turn):
available_moves = board_state.get_legal_moves()
move = np.random.choice(available_moves)
next_board_state = deepcopy(board_state).make_move(move, player_turn)
new_node = TreeNode(parent=current_node)
current_node._children[move] = new_node
winner = next_board_state.check_winner()
if winner != None:
reward = 1 if winner == player_turn else -1
else:
reward = simulate_random_playout(deepcopy(next_board_state), player_turn)
update_tree(current_node, reward)
def mcts_search(root_state, n_simulations=1000):
root_node = TreeNode(None, 1.0)
for _ in range(n_simulations):
node = root_node
while not node.is_leaf():
node = select_child_with_highest_uct(node)
if node.board_state.game_over():
continue
expand_and_evaluate(node.board_state, node.player_to_act())
most_visited_nodes = sorted(
[(child_node.n_visits, action) for action,
child_node in root_node.children.items()], reverse=True)[:1]
_, best_action = most_visited_nodes[0]
return best_action
```
This code snippet provides a basic framework for implementing MCTS specifically tailored towards games like Gomoku where players aim to align five stones consecutively either horizontally, vertically, or diagonally before their opponents do so[^1].
python实现的基于蒙特卡洛树搜索(MCTS)与UCT 的五子棋游戏的代码
好的,以下是一个基于Python实现的基于MCTS和UCT的五子棋游戏AI的代码示例:
``` python
import random
import math
class TreeNode:
def __init__(self, state, parent=None):
self.state = state
self.parent = parent
self.children = []
self.visits = 0
self.score = 0
def UCT(node):
C = 1.4
if node.visits == 0:
return float('inf')
return (node.score / node.visits) + C * math.sqrt(math.log(node.parent.visits) / node.visits)
def MCTS(state, iterations):
root = TreeNode(state)
for i in range(iterations):
node = root
# selection
while node.children:
node = max(node.children, key=UCT)
# expansion
if node.visits > 0:
moves = node.state.get_moves()
for move in moves:
if move not in [c.state.last_move for c in node.children]:
child_state = node.state.apply_move(move)
child_node = TreeNode(child_state, node)
node.children.append(child_node)
# simulation
sim_node = node
while sim_node.children:
sim_node = random.choice(sim_node.children)
score = simulate(sim_node.state)
# backpropagation
while node:
node.visits += 1
node.score += score
node = node.parent
return max(root.children, key=lambda c: c.visits).state.last_move
def simulate(state):
player = state.get_current_player()
while not state.is_terminal():
move = random.choice(state.get_moves())
state = state.apply_move(move)
player = state.get_current_player()
if state.get_winner() == player:
return 1
elif state.get_winner() == None:
return 0.5
else:
return 0
class Board:
def __init__(self, width=15, height=15, win_length=5):
self.width = width
self.height = height
self.win_length = win_length
self.board = [[None for y in range(height)] for x in range(width)]
self.last_move = None
def get_moves(self):
moves = []
for x in range(self.width):
for y in range(self.height):
if self.board[x][y] == None:
moves.append((x, y))
return moves
def apply_move(self, move):
x, y = move
player = self.get_current_player()
new_board = Board(self.width, self.height, self.win_length)
new_board.board = [row[:] for row in self.board]
new_board.board[x][y] = player
new_board.last_move = move
return new_board
def get_current_player(self):
if sum(row.count(None) for row in self.board) % 2 == 0:
return "X"
else:
return "O"
def is_terminal(self):
if self.get_winner() != None:
return True
for x in range(self.width):
for y in range(self.height):
if self.board[x][y] == None:
return False
return True
def get_winner(self):
for x in range(self.width):
for y in range(self.height):
if self.board[x][y] == None:
continue
if x + self.win_length <= self.width:
if all(self.board[x+i][y] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
if y + self.win_length <= self.height:
if all(self.board[x][y+i] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
if x + self.win_length <= self.width and y + self.win_length <= self.height:
if all(self.board[x+i][y+i] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
if x + self.win_length <= self.width and y - self.win_length >= -1:
if all(self.board[x+i][y-i] == self.board[x][y] for i in range(self.win_length)):
return self.board[x][y]
return None
def __str__(self):
return "\n".join(" ".join(self.board[x][y] or "-" for x in range(self.width)) for y in range(self.height))
if __name__ == "__main__":
board = Board()
while not board.is_terminal():
if board.get_current_player() == "X":
x, y = map(int, input("Enter move (x y): ").split())
board = board.apply_move((x, y))
else:
move = MCTS(board, 1000)
print("AI move:", move)
board = board.apply_move(move)
print(board)
print("Winner:", board.get_winner())
```
该代码定义了一个 `TreeNode` 类来保存节点的状态和统计信息,实现了基于UCB公式的UCT算法和基于MCTS和UCT的五子棋AI。同时,代码还定义了一个 `Board` 类来表示五子棋游戏的状态和规则,并实现了判断胜负、获取可行落子位置等方法。在 `__main__` 函数中,代码通过交替输入玩家落子位置和调用AI选择落子位置的方式,实现了人机对战的功能。
希望这个代码对你有所帮助!
阅读全文