写一个亚马逊棋蒙特卡洛树

时间: 2024-05-04 16:19:00 浏览: 11
亚马逊棋是一种棋类游戏,玩家需要在棋盘上放置障碍物并控制棋子移动,以消灭对手的棋子。Monte Carlo Tree Search(MCTS)是一种常用的人工智能算法,可用于解决许多类似棋类游戏的问题。在这里,我们将使用MCTS算法来解决亚马逊棋。 首先,我们需要定义棋盘和棋子的状态。我们可以使用一个二维数组来表示棋盘,其中0表示空的位置,1表示玩家1的棋子,2表示玩家2的棋子,3表示障碍物。我们还需要跟踪当前哪位玩家正在操作,以及哪些位置可以放置障碍物。 接下来,我们需要定义MCTS算法的几个组成部分。首先是模拟阶段,其中我们会选择一个随机动作并模拟其结果。 ``` def simulate(board, player): actions = get_possible_actions(board, player) if len(actions) == 0: return -1 action = random.choice(actions) result = execute_action(board, player, action) if result == player: return 1 elif result == -1: return 0 else: return -simulate(board, 3 - player) ``` 在这里,我们首先获取当前玩家可以执行的所有操作,然后随机选择一个操作并模拟其结果。如果结果是当前玩家赢了,我们返回1;如果结果是平局,我们返回0;否则,我们继续模拟对手的动作并返回其相反数。 接下来是选择阶段,在这里我们会选择一个具有最大置信上限的子节点进行扩展。 ``` def select(node): while not node.is_leaf(): node = max(node.children, key=uct_score) return node ``` 在这里,我们一直向下遍历树,直到找到一个叶节点。在遍历过程中,我们会计算每个子节点的置信上限得分,然后选择得分最高的子节点进行扩展。 接下来是扩展阶段,在这里我们会添加一个新节点并执行一个随机动作。 ``` def expand(node): actions = get_possible_actions(node.board, node.player) action = random.choice(actions) new_board = execute_action(node.board, node.player, action) new_player = 3 - node.player new_node = Node(new_board, new_player, node) node.children.append(new_node) return new_node ``` 在这里,我们首先获取当前玩家可以执行的所有操作,然后随机选择一个操作并模拟其结果。我们将新棋盘状态添加到树中作为一个新的节点,然后将该节点添加到当前节点的子节点列表中。 最后是回溯阶段,在这里我们会将模拟结果传播到根节点。 ``` def backpropagate(node, result): while node is not None: node.visits += 1 node.wins += result node = node.parent ``` 在这里,我们会将模拟结果传播到当前节点的所有祖先节点。我们还会增加每个节点的访问计数和胜利计数。 现在我们可以将所有这些组成部分合并为一个完整的MCTS算法。 ``` class Node: def __init__(self, board, player, parent=None): self.board = board self.player = player self.parent = parent self.children = [] self.wins = 0 self.visits = 0 def is_leaf(self): return len(self.children) == 0 def uct_score(node): if node.visits == 0: return float('inf') return node.wins / node.visits + math.sqrt(2 * math.log(node.parent.visits) / node.visits) def get_possible_actions(board, player): actions = [] for i in range(10): for j in range(10): if board[i][j] == player: for di, dj in [(1, 0), (-1, 0), (0, 1), (0, -1)]: ni, nj = i + di, j + dj while 0 <= ni < 10 and 0 <= nj < 10: if board[ni][nj] == 0: actions.append((i, j, ni, nj)) ni, nj = ni + di, nj + dj else: break if len(actions) == 0: actions.append((-1, -1, -1, -1)) return actions def execute_action(board, player, action): if action == (-1, -1, -1, -1): return -1 i, j, ni, nj = action if board[ni][nj] == 3: return 3 - player board[i][j] = 0 board[ni][nj] = player for di, dj in [(1, 0), (-1, 0), (0, 1), (0, -1)]: ni, nj = i + di, j + dj while 0 <= ni < 10 and 0 <= nj < 10 and board[ni][nj] == 0: board[ni][nj] = 3 ni, nj = ni + di, nj + dj return 0 def simulate(board, player): actions = get_possible_actions(board, player) if len(actions) == 0: return -1 action = random.choice(actions) result = execute_action(board, player, action) if result == player: return 1 elif result == -1: return 0 else: return -simulate(board, 3 - player) def select(node): while not node.is_leaf(): node = max(node.children, key=uct_score) return node def expand(node): actions = get_possible_actions(node.board, node.player) action = random.choice(actions) new_board = execute_action(node.board, node.player, action) new_player = 3 - node.player new_node = Node(new_board, new_player, node) node.children.append(new_node) return new_node def backpropagate(node, result): while node is not None: node.visits += 1 node.wins += result node = node.parent def mcts(board, player, iterations): root = Node(board, player) for i in range(iterations): node = select(root) if node.visits == 0: result = simulate(node.board, node.player) else: node = expand(node) result = simulate(node.board, node.player) backpropagate(node, result) return max(root.children, key=lambda node: node.visits).board ``` 在这里,我们定义了一个MCTS函数,其中我们指定当前棋盘状态、当前玩家以及要运行的迭代次数。我们首先创建一个根节点,然后执行指定数量的迭代。在每次迭代中,我们选择一个节点进行扩展或模拟,并将结果传播回根节点。最后,我们返回访问计数最高的子节点的棋盘状态作为我们的决策。 现在我们可以使用这个MCTS算法来解决亚马逊棋问题。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

jsp页面如何展示后台返回的xml代码

可以使用JSP内置标签库的<c:out>标签来展示后台返回的XML代码。具体步骤如下: 1. 在JSP页面中引入JSTL标签库:<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %> 2. 在JSP页面中使用<c:out>标签展示后台返回的XML代码,示例代码如下: <c:out value="${xmlString}" escapeXml="false"/> 其中,${xmlString}为后台返回的XML代码字符串。escapeXml="false"参数表示不对XML代码进行HTML转义,保留原始代码格式
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩