Keras超参数优化tensorboard
时间: 2024-01-15 14:19:43 浏览: 96
keras与tensorboard结合使用
以下是使用TensorBoard进行Keras超参数优化的步骤:
1. 引入必要的库和模块:
```python
import tensorflow as tf
from tensorflow import keras
from tensorboard.plugins.hparams import api as hp
```
2. 定义超参数搜索空间:
```python
HP_UNITS = hp.HParam('units', hp.Discrete([16, 32, 64]))
HP_DROPOUT = hp.HParam('dropout', hp.RealInterval(0.1, 0.2))
HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['adam', 'sgd']))
METRIC_ACCURACY = 'accuracy'
```
3. 定义模型训练函数:
```python
def train_model(hparams):
model = keras.Sequential([
keras.layers.Dense(hparams[HP_UNITS], activation='relu'),
keras.layers.Dropout(hparams[HP_DROPOUT]),
keras.layers.Dense(10)
])
model.compile(optimizer=hparams[HP_OPTIMIZER],
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[METRIC_ACCURACY])
model.fit(x_train, y_train, epochs=10)
_, accuracy = model.evaluate(x_test, y_test)
return accuracy
```
4. 定义TensorBoard回调函数:
```python
def run(run_dir, hparams):
with tf.summary.create_file_writer(run_dir).as_default():
hp.hparams(hparams) # 记录超参数
accuracy = train_model(hparams)
tf.summary.scalar(METRIC_ACCURACY, accuracy, step=1)
```
5. 运行超参数搜索:
```python
session_num = 0
for units in HP_UNITS.domain.values:
for dropout_rate in (HP_DROPOUT.domain.min_value, HP_DROPOUT.domain.max_value):
for optimizer in HP_OPTIMIZER.domain.values:
hparams = {
HP_UNITS: units,
HP_DROPOUT: dropout_rate,
HP_OPTIMIZER: optimizer
}
run_name = "run-%d" % session_num
print('-- Starting trial: %s' % run_name)
print({h.name: hparams[h] for h in hparams})
run('logs/hparam_tuning/' + run_name, hparams)
session_num += 1
```
6. 启动TensorBoard:
```shell
tensorboard --logdir logs/hparam_tuning
```
阅读全文